Invitación a la matemática discreta


Book Description

Invitación a la matemática discreta es una introducción clara, accesible y autocontenida a la matemática discreta, y en particular a la combinatoria y la teoría de grafos. Está orientada a estudiantes de grado y primeros cursos de postgrado y ha sido escrita con el propósito de estimular el interés por las matemáticas a través de una aproximación activa al material por medio de la resolución de problemas. La obra se centra en un espectro menor de temas que la mayoría de textos de matemática discreta con la intención de abordar los contenidos seleccionados con una profundidad poco común y bajo puntos de vista diversos. El libro refleja la convicción de los autores que el mayor provecho que se obtiene estudiando matemáticas es el cultivo de un pensamiento lógico y transparente. Los más de 400 ejercicios que acompañan al texto, de diferentes grados de dificultad y muchos de ellos con indicaciones para su solución, sostienen esa opinión. La obra está escrita con un estilo vivaz e informal y ha sido ilustrada con más de 200 diagramas y dibujos.




Invitation to Discrete Mathematics


Book Description

A clear and self-contained introduction to discrete mathematics for undergraduates and early graduates.




Mathematics++


Book Description

Mathematics++ is a concise introduction to six selected areas of 20th century mathematics providing numerous modern mathematical tools used in contemporary research in computer science, engineering, and other fields. The areas are: measure theory, high-dimensional geometry, Fourier analysis, representations of groups, multivariate polynomials, and topology. For each of the areas, the authors introduce basic notions, examples, and results. The presentation is clear and accessible, stressing intuitive understanding, and it includes carefully selected exercises as an integral part. Theory is complemented by applications--some quite surprising--in theoretical computer science and discrete mathematics. The chapters are independent of one another and can be studied in any order. It is assumed that the reader has gone through the basic mathematics courses. Although the book was conceived while the authors were teaching Ph.D. students in theoretical computer science and discrete mathematics, it will be useful for a much wider audience, such as mathematicians specializing in other areas, mathematics students deciding what specialization to pursue, or experts in engineering or other fields.




Approximation Algorithms and Semidefinite Programming


Book Description

Semidefinite programs constitute one of the largest classes of optimization problems that can be solved with reasonable efficiency - both in theory and practice. They play a key role in a variety of research areas, such as combinatorial optimization, approximation algorithms, computational complexity, graph theory, geometry, real algebraic geometry and quantum computing. This book is an introduction to selected aspects of semidefinite programming and its use in approximation algorithms. It covers the basics but also a significant amount of recent and more advanced material. There are many computational problems, such as MAXCUT, for which one cannot reasonably expect to obtain an exact solution efficiently, and in such case, one has to settle for approximate solutions. For MAXCUT and its relatives, exciting recent results suggest that semidefinite programming is probably the ultimate tool. Indeed, assuming the Unique Games Conjecture, a plausible but as yet unproven hypothesis, it was shown that for these problems, known algorithms based on semidefinite programming deliver the best possible approximation ratios among all polynomial-time algorithms. This book follows the “semidefinite side” of these developments, presenting some of the main ideas behind approximation algorithms based on semidefinite programming. It develops the basic theory of semidefinite programming, presents one of the known efficient algorithms in detail, and describes the principles of some others. It also includes applications, focusing on approximation algorithms.




Understanding and Using Linear Programming


Book Description

The book is an introductory textbook mainly for students of computer science and mathematics. Our guiding phrase is "what every theoretical computer scientist should know about linear programming". A major focus is on applications of linear programming, both in practice and in theory. The book is concise, but at the same time, the main results are covered with complete proofs and in sufficient detail, ready for presentation in class. The book does not require more prerequisites than basic linear algebra, which is summarized in an appendix. One of its main goals is to help the reader to see linear programming "behind the scenes".




Rafael Lozano-Hemmer


Book Description




Thirty-three Miniatures


Book Description

This volume contains a collection of clever mathematical applications of linear algebra, mainly in combinatorics, geometry, and algorithms. Each chapter covers a single main result with motivation and full proof in at most ten pages and can be read independently of all other chapters (with minor exceptions), assuming only a modest background in linear algebra. The topics include a number of well-known mathematical gems, such as Hamming codes, the matrix-tree theorem, the Lovasz bound on the Shannon capacity, and a counterexample to Borsuk's conjecture, as well as other, perhaps less popular but similarly beautiful results, e.g., fast associativity testing, a lemma of Steinitz on ordering vectors, a monotonicity result for integer partitions, or a bound for set pairs via exterior products. The simpler results in the first part of the book provide ample material to liven up an undergraduate course of linear algebra. The more advanced parts can be used for a graduate course of linear-algebraic methods or for seminar presentations. Table of Contents: Fibonacci numbers, quickly; Fibonacci numbers, the formula; The clubs of Oddtown; Same-size intersections; Error-correcting codes; Odd distances; Are these distances Euclidean?; Packing complete bipartite graphs; Equiangular lines; Where is the triangle?; Checking matrix multiplication; Tiling a rectangle by squares; Three Petersens are not enough; Petersen, Hoffman-Singleton, and maybe 57; Only two distances; Covering a cube minus one vertex; Medium-size intersection is hard to avoid; On the difficulty of reducing the diameter; The end of the small coins; Walking in the yard; Counting spanning trees; In how many ways can a man tile a board?; More bricks--more walls?; Perfect matchings and determinants; Turning a ladder over a finite field; Counting compositions; Is it associative?; The secret agent and umbrella; Shannon capacity of the union: a tale of two fields; Equilateral sets; Cutting cheaply using eigenvectors; Rotating the cube; Set pairs and exterior products; Index. (STML/53)




Using the Borsuk-Ulam Theorem


Book Description

To the uninitiated, algebraic topology might seem fiendishly complex, but its utility is beyond doubt. This brilliant exposition goes back to basics to explain how the subject has been used to further our understanding in some key areas. A number of important results in combinatorics, discrete geometry, and theoretical computer science have been proved using algebraic topology. While the results are quite famous, their proofs are not so widely understood. This book is the first textbook treatment of a significant part of these results. It focuses on so-called equivariant methods, based on the Borsuk-Ulam theorem and its generalizations. The topological tools are intentionally kept on a very elementary level. No prior knowledge of algebraic topology is assumed, only a background in undergraduate mathematics, and the required topological notions and results are gradually explained.




Matemática discreta


Book Description




Matemática discreta. 3ª ed.


Book Description

Esta tercera edición de Matemática discreta se ha enriquecido con nuevos capítulos dedicados a la algorítmica y a la complejidad computacional, a la aplicación de los grafos a la ingeniería y la investigación operativa, y a la aritmética Zm. La nueva teoría, tal como se ha hecho en ediciones anteriores, se acompaña de innumerables casos y ejemplos analizados. Con esta nueva edición se pretende ofrecer un tratado moderno, más completo y mejor adaptado al aprendizaje de esta materia por el estudiante universitario, tanto de las distintas ramas de la ingeniería como de ciencias. El contenido de la obra es fruto de la experiencia docente del autor en la referida materia dentro del ámbito universitario, sobre todo en lo relativo a la ingeniería informática, en universidades tanto públicas como privadas. El texto cubre y desarrolla las siguientes áreas: teoría de números, álgebra de Boole, teoría de conjuntos, relaciones, recurrencias, análisis combinatorio, una extensa teoría de grafos, con un capítulo especial dedicado a los árboles, grafos planos y coloreados y la lógica de predicados. Asimismo, el libro se presenta con un enfoque claro y didáctico gracias a la gran cantidad de ejercicios que se analizan y resuelven a modo de ejemplo.