Invitation To Algebra: A Resource Compendium For Teachers, Advanced Undergraduate Students And Graduate Students In Mathematics


Book Description

This book presents a compendium style account of a comprehensive mathematical journey from Arithmetic to Algebra. It contains material that is helpful to graduate and advanced undergraduate students in mathematics, university and college professors teaching mathematics, as well as some mathematics teachers teaching in the final year of high school. A successful teacher must know more than what a particular course curriculum asks for. A number of topics that are missing in present-day textbooks, and which may be attractive to students at the graduate or advanced undergraduate level in mathematics, for example, continued fractions, arithmetic progressions of higher order, complex numbers in plane geometry, differential schemes, path semigroups and path algebras, have been carefully presented. This reflects the aim of the book to attract students to mathematics.




Invitation to Algebra: A Resource Compendium for Teachers, Advanced Undergraduate Students and Graduate Students in Mathematics


Book Description

This book presents a compendium style account of a comprehensive mathematical journey from Arithmetic to Algebra. It contains material that is helpful to graduate and advanced undergraduate students in mathematics, university and college professors teaching mathematics, as well as some mathematics teachers teaching in the final year of high school. A successful teacher must know more than what a particular course curriculum asks for. A number of topics that are missing in present-day textbooks, and which may be attractive to students at the graduate or advanced undergraduate level in mathematics, for example, continued fractions, arithmetic progressions of higher order, complex numbers in plane geometry, differential schemes, path semigroups and path algebras, have been carefully presented. This reflects the aim of the book to attract students to mathematics.










Compendium for Early Career Researchers in Mathematics Education


Book Description

The purpose of this Open Access compendium, written by experienced researchers in mathematics education, is to serve as a resource for early career researchers in furthering their knowledge of the state of the field and disseminating their research through publishing. To accomplish this, the book is split into four sections: Empirical Methods, Important Mathematics Education Themes, Academic Writing and Academic Publishing, and a section Looking Ahead. The chapters are based on workshops that were presented in the Early Career Researcher Day at the 13th International Congress on Mathematical Education (ICME-13). The combination of presentations on methodological approaches and theoretical perspectives shaping the field in mathematics education research, as well as the strong emphasis on academic writing and publishing, offered strong insight into the theoretical and empirical bases of research in mathematics education for early career researchers in this field. Based on these presentations, the book provides a state-of-the-art overview of important theories from mathematics education and the broad variety of empirical approaches currently widely used in mathematics education research. This compendium supports early career researchers in selecting adequate theoretical approaches and adopting the most appropriate methodological approaches for their own research. Furthermore, it helps early career researchers in mathematics education to avoid common pitfalls and problems while writing up their research and it provides them with an overview of the most important journals for research in mathematics education, helping them to select the right venue for publishing and disseminating their work.




Compendium for Research in Mathematics Education


Book Description

This volume, a comprehensive survey and critical analysis of today's issues in mathematics education, distills research to build knowledge and capacity in the field. The compendium is a valuable new resource that provides the most comprehensive evidence about what is known about research in mathematics education. The 38 chapters present five sections that address research about (1) foundations, (2) methods, (3) mathematical processes and content, (4) students, teachers, and learning environments, and (5) futuristic issues. Each chapter offers a synthesis of research with an eye to the historical development of a research topic and, in particular, historical milestones of the research about the topic.




Journal of Education


Book Description




Second Handbook of Research on Mathematics Teaching and Learning


Book Description

The audience remains much the same as for the 1992 Handbook, namely, mathematics education researchers and other scholars conducting work in mathematics education. This group includes college and university faculty, graduate students, investigators in research and development centers, and staff members at federal, state, and local agencies that conduct and use research within the discipline of mathematics. The intent of the authors of this volume is to provide useful perspectives as well as pertinent information for conducting investigations that are informed by previous work. The Handbook should also be a useful textbook for graduate research seminars. In addition to the audience mentioned above, the present Handbook contains chapters that should be relevant to four other groups: teacher educators, curriculum developers, state and national policy makers, and test developers and others involved with assessment. Taken as a whole, the chapters reflects the mathematics education research community's willingness to accept the challenge of helping the public understand what mathematics education research is all about and what the relevance of their research fi ndings might be for those outside their immediate community.




The Condition of Education, 2020


Book Description

The Condition of Education 2020 summarizes important developments and trends in education using the latest available data. The report presentsnumerous indicators on the status and condition of education. The indicators represent a consensus of professional judgment on the most significant national measures of the condition and progress of education for which accurate data are available. The Condition of Education includes an "At a Glance" section, which allows readers to quickly make comparisons across indicators, and a "Highlights" section, which captures key findings from each indicator. In addition, The Condition of Education contains a Reader's Guide, a Glossary, and a Guide to Sources that provide additional background information. Each indicator provides links to the source data tables used to produce the analyses.




Advanced Calculus (Revised Edition)


Book Description

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.