Invitation to Discrete Mathematics


Book Description

A clear and self-contained introduction to discrete mathematics for undergraduates and early graduates.




Discrete Mathematics


Book Description

This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.




Invitation to Dynamical Systems


Book Description

This text is designed for those who wish to study mathematics beyond linear algebra but are not ready for abstract material. Rather than a theorem-proof-corollary-remark style of exposition, it stresses geometry, intuition, and dynamical systems. An appendix explains how to write MATLAB, Mathematica, and C programs to compute dynamical systems. 1996 edition.




The Discrete Mathematical Charms of Paul Erdos


Book Description

Paul Erdős published more papers during his lifetime than any other mathematician, especially in discrete mathematics. He had a nose for beautiful, simply-stated problems with solutions that have far-reaching consequences across mathematics. This captivating book, written for students, provides an easy-to-understand introduction to discrete mathematics by presenting questions that intrigued Erdős, along with his brilliant ways of working toward their answers. It includes young Erdős's proof of Bertrand's postulate, the Erdős-Szekeres Happy End Theorem, De Bruijn-Erdős theorem, Erdős-Rado delta-systems, Erdős-Ko-Rado theorem, Erdős-Stone theorem, the Erdős-Rényi-Sós Friendship Theorem, Erdős-Rényi random graphs, the Chvátal-Erdős theorem on Hamilton cycles, and other results of Erdős, as well as results related to his work, such as Ramsey's theorem or Deza's theorem on weak delta-systems. Its appendix covers topics normally missing from introductory courses. Filled with personal anecdotes about Erdős, this book offers a behind-the-scenes look at interactions with the legendary collaborator.




An Invitation to Combinatorics


Book Description

A conversational introduction to combinatorics for upper undergraduates, emphasizing problem solving and active student participation.




Discrete Mathematics


Book Description

The advent of fast computers and the search for efficient algorithms revolutionized combinatorics and brought about the field of discrete mathematics. This book is an introduction to the main ideas and results of discrete mathematics, and with its emphasis on algorithms it should be interesting to mathematicians and computer scientists alike. The book is organized into three parts: enumeration, graphs and algorithms, and algebraic systems. There are 600 exercises with hints and solutions to about half of them. The only prerequisites for understanding everything in the book are linear algebra and calculus at the undergraduate level. Praise for the German edition… This book is a well-written introduction to discrete mathematics and is highly recommended to every student of mathematics and computer science as well as to teachers of these topics. —Konrad Engel for MathSciNet Martin Aigner is a professor of mathematics at the Free University of Berlin. He received his PhD at the University of Vienna and has held a number of positions in the USA and Germany before moving to Berlin. He is the author of several books on discrete mathematics, graph theory, and the theory of search. The Monthly article Turan's graph theorem earned him a 1995 Lester R. Ford Prize of the MAA for expository writing, and his book Proofs from the BOOK with Günter M. Ziegler has been an international success with translations into 12 languages.




An Invitation to Applied Category Theory


Book Description

Category theory is unmatched in its ability to organize and layer abstractions and to find commonalities between structures of all sorts. No longer the exclusive preserve of pure mathematicians, it is now proving itself to be a powerful tool in science, informatics, and industry. By facilitating communication between communities and building rigorous bridges between disparate worlds, applied category theory has the potential to be a major organizing force. This book offers a self-contained tour of applied category theory. Each chapter follows a single thread motivated by a real-world application and discussed with category-theoretic tools. We see data migration as an adjoint functor, electrical circuits in terms of monoidal categories and operads, and collaborative design via enriched profunctors. All the relevant category theory, from simple to sophisticated, is introduced in an accessible way with many examples and exercises, making this an ideal guide even for those without experience of university-level mathematics.




An Invitation to Abstract Mathematics


Book Description

This undergraduate textbook promotes an active transition to higher mathematics. Problem solving is the heart and soul of this book: each problem is carefully chosen to demonstrate, elucidate, or extend a concept. More than 300 exercises engage the reader in extensive arguments and creative approaches, while exploring connections between fundamental mathematical topics. Divided into four parts, this book begins with a playful exploration of the building blocks of mathematics, such as definitions, axioms, and proofs. A study of the fundamental concepts of logic, sets, and functions follows, before focus turns to methods of proof. Having covered the core of a transition course, the author goes on to present a selection of advanced topics that offer opportunities for extension or further study. Throughout, appendices touch on historical perspectives, current trends, and open questions, showing mathematics as a vibrant and dynamic human enterprise. This second edition has been reorganized to better reflect the layout and curriculum of standard transition courses. It also features recent developments and improved appendices. An Invitation to Abstract Mathematics is ideal for those seeking a challenging and engaging transition to advanced mathematics, and will appeal to both undergraduates majoring in mathematics, as well as non-math majors interested in exploring higher-level concepts. From reviews of the first edition: Bajnok’s new book truly invites students to enjoy the beauty, power, and challenge of abstract mathematics. ... The book can be used as a text for traditional transition or structure courses ... but since Bajnok invites all students, not just mathematics majors, to enjoy the subject, he assumes very little background knowledge. Jill Dietz, MAA Reviews The style of writing is careful, but joyously enthusiastic.... The author’s clear attitude is that mathematics consists of problem solving, and that writing a proof falls into this category. Students of mathematics are, therefore, engaged in problem solving, and should be given problems to solve, rather than problems to imitate. The author attributes this approach to his Hungarian background ... and encourages students to embrace the challenge in the same way an athlete engages in vigorous practice. John Perry, zbMATH




Discrete Mathematics


Book Description

Aimed at undergraduate mathematics and computer science students, this book is an excellent introduction to a lot of problems of discrete mathematics. It discusses a number of selected results and methods, mostly from areas of combinatorics and graph theory, and it uses proofs and problem solving to help students understand the solutions to problems. Numerous examples, figures, and exercises are spread throughout the book.




An Invitation to Biomathematics


Book Description

Essential for all biology and biomathematics courses, this textbook provides students with a fresh perspective of quantitative techniques in biology in a field where virtually any advance in the life sciences requires a sophisticated mathematical approach. An Invitation to Biomathematics, expertly written by a team of experienced educators, offers students a solid understanding of solving biological problems with mathematical applications. This text succeeds in enabling students to truly experience advancements made in biology through mathematical models by containing computer-based hands-on laboratory projects with emphasis on model development, model validation, and model refinement. The supplementary work, Laboratory Manual of Biomathematics is available separately ISBN 0123740223, or as a set ISBN: 0123740290) - Provides a complete guide for development of quantification skills crucial for applying mathematical methods to biological problems - Includes well-known examples from across disciplines in the life sciences including modern biomedical research - Explains how to use data sets or dynamical processes to build mathematical models - Offers extensive illustrative materials - Written in clear and easy-to-follow language without assuming a background in math or biology - A laboratory manual is available for hands-on, computer-assisted projects based on material covered in the text