Ions, Cell Proliferation, and Cancer


Book Description

Ions, Cell Proliferation, and Cancer present the credibility of ions as specific regulators of cell proliferation. This book provides an understanding of the control of cell proliferation and the deregulated proliferation of cancer cells. Organized into three sections encompassing 32 chapters, this book begins with an overview of the important role that ions in animal cells play in a variety of fundamental processes associated with essential cell functions. This text then examines the relationship between ionic events and cellular production, specifically in mammalian cell systems. Other chapters consider the development of atomic absorption spectrophotometry as a method for measuring inorganic cations. This book discusses as well the two widely applicable methods for measuring free concentrations of ions inside cells. The final chapter deals with magnesium ion as the most abundant divalent action in living cells. This book is a valuable resource for animal cell biologists, molecular biologists, and research workers.




Holland-Frei Cancer Medicine


Book Description

Holland-Frei Cancer Medicine, Ninth Edition, offers a balanced view of the most current knowledge of cancer science and clinical oncology practice. This all-new edition is the consummate reference source for medical oncologists, radiation oncologists, internists, surgical oncologists, and others who treat cancer patients. A translational perspective throughout, integrating cancer biology with cancer management providing an in depth understanding of the disease An emphasis on multidisciplinary, research-driven patient care to improve outcomes and optimal use of all appropriate therapies Cutting-edge coverage of personalized cancer care, including molecular diagnostics and therapeutics Concise, readable, clinically relevant text with algorithms, guidelines and insight into the use of both conventional and novel drugs Includes free access to the Wiley Digital Edition providing search across the book, the full reference list with web links, illustrations and photographs, and post-publication updates




Calcium Entry Channels in Non-Excitable Cells


Book Description

Calcium Entry Channels in Non-Excitable Cells focuses on methods of investigating the structure and function of non-voltage gated calcium channels. Each chapter presents important discoveries in calcium entry pathways, specifically dealing with the molecular identification of store-operated calcium channels which were reviewed by earlier volumes in the Methods in Signal Transduction series. Crystallographic and pharmacological approaches to the study of calcium channels of epithelial cells are also discussed. Calcium ion is a messenger in most cell types. Whereas voltage gated calcium channels have been studied extensively, the non-voltage gated calcium entry channel genes have only been identified relatively recently. The book will fill this important niche.




Voltage Gated Sodium Channels


Book Description

A number of techniques to study ion channels have been developed since the electrical basis of excitability was first discovered. Ion channel biophysicists have at their disposal a rich and ever-growing array of instruments and reagents to explore the biophysical and structural basis of sodium channel behavior. Armed with these tools, researchers have made increasingly dramatic discoveries about sodium channels, culminating most recently in crystal structures of voltage-gated sodium channels from bacteria. These structures, along with those from other channels, give unprecedented insight into the structural basis of sodium channel function. This volume of the Handbook of Experimental Pharmacology will explore sodium channels from the perspectives of their biophysical behavior, their structure, the drugs and toxins with which they are known to interact, acquired and inherited diseases that affect sodium channels and the techniques with which their biophysical and structural properties are studied.







Magnesium in the Central Nervous System


Book Description

The brain is the most complex organ in our body. Indeed, it is perhaps the most complex structure we have ever encountered in nature. Both structurally and functionally, there are many peculiarities that differentiate the brain from all other organs. The brain is our connection to the world around us and by governing nervous system and higher function, any disturbance induces severe neurological and psychiatric disorders that can have a devastating effect on quality of life. Our understanding of the physiology and biochemistry of the brain has improved dramatically in the last two decades. In particular, the critical role of cations, including magnesium, has become evident, even if incompletely understood at a mechanistic level. The exact role and regulation of magnesium, in particular, remains elusive, largely because intracellular levels are so difficult to routinely quantify. Nonetheless, the importance of magnesium to normal central nervous system activity is self-evident given the complicated homeostatic mechanisms that maintain the concentration of this cation within strict limits essential for normal physiology and metabolism. There is also considerable accumulating evidence to suggest alterations to some brain functions in both normal and pathological conditions may be linked to alterations in local magnesium concentration. This book, containing chapters written by some of the foremost experts in the field of magnesium research, brings together the latest in experimental and clinical magnesium research as it relates to the central nervous system. It offers a complete and updated view of magnesiums involvement in central nervous system function and in so doing, brings together two main pillars of contemporary neuroscience research, namely providing an explanation for the molecular mechanisms involved in brain function, and emphasizing the connections between the molecular changes and behavior. It is the untiring efforts of those magnesium researchers who have dedicated their lives to unraveling the mysteries of magnesiums role in biological systems that has inspired the collation of this volume of work.




Autophagy and Cancer


Book Description

With the explosion of information on autophagy in cancer, this is an opportune time to speed the efforts to translate our current knowledge about autophagy regulation into better understanding of its role in cancer. This book will cover the latest advances in this area from the basics, such as the molecular machinery for autophagy induction and regulation, up to the current areas of interest such as modulation of autophagy and drug discovery for cancer prevention and treatment. The text will include an explanation on how autophagy can function in both oncogenesis and tumor suppression and a description of its function in tumor development and tumor suppression through its roles in cell survival, cell death, cell growth as well as its influences on inflammation, immunity, DNA damage, oxidative stress, tumor microenvironment, etc. The remaining chapters will cover topics on autophagy and cancer therapy. These pages will serve as a description on how the pro-survival function of autophagy may help cancer cells resist chemotherapy and radiation treatment as well as how the pro-death functions of autophagy may enhance cell death in response to cancer therapy, and how to target autophagy for cancer prevention and therapy − what to target and how to target it. ​




Protein Targeting, Transport, and Translocation


Book Description

Protein Targeting, Transport, and Translocation presents an in-depth overview on the topic of protein synthesis, covering all areas of protein science, including protein targeting, secretion, folding, assembly, structure, localization, quality control, degradation, and antigen presentation. Chapters also include sections on the history of the field as well as summary panels for quick reference. Numerous color illustrations complement the presentation of material. This book is an essential reference for anyone in biochemistry and protein science, as well as an excellent textbook for advanced students in these and related fields. - Basic principles and techniques - Targeting adn sorting sequences - Protein export in bacteria - Membrane protein integration into ER and bacterial membranes - Protein translocation across the ER - Disulfide bond formation in prokaryotes and eukaryotes - Quality control in the export pathway - Import of proteins into organelles - The secretory pathway - Vesicular transport - Spectacular color throughout




The hERG Cardiac Potassium Channel


Book Description

This book draws together contributions from basic, pharmaceutical and clinical sciences aimed at a better understanding of the structure and function of hERG and the molecular basis for compound binding. It features regulatory authority perspectives on preferred preclinical test systems and includes topics on hERG channel gating, regulation of functional expression, pharmacological properties of hERG/IKr channels, drug-induced long QT syndrome and preclinical evaluation and regulatory recommendations for assessing QT prolongation risks. Better understanding of the role of the hERG channel in drug-induced cardiac arrhythmias should ultimately lead to the development of important, new and safer medicines.




Hormones Growth Factors & Oncogenes


Book Description

This text examines the hormones and peptide growth factors involved in the regulation of metabolism, growth and differentiation in metazoan organisms and proto-oncogene expression. Investigates protein products of some proto-oncogenes for involvement in the transductional and post-transductional and mechanisms of hormones and peptide growth factors.