Islands, Mounds and Atoms


Book Description

Crystal growth far from thermodynamic equilibrium is nothing but homoepitaxy - thin film growth on a crystalline substrate of the same material. Because of the absence of misfit effects, homoepitaxy is an ideal playground to study growth kinetics in its pure form. Despite its conceptual simplicity, homoepitaxy gives rise to a wide range of patterns. This book explains the formation of such patterns in terms of elementary atomic processes, using the well-studied Pt/Pt(111) system as a reference point and a large number of Scanning Tunneling Microscopy images for visualization. Topics include surface diffusion, nucleation theory, island shapes, mound formation and coarsening, and layer-by-layer growth. A separate chapter is dedicated to describing the main experimental and theoretical methods.




Surface Diffusion


Book Description

For the first time, this book unites the theory, experimental techniques and computational tools used to describe the diffusion of atoms, molecules and nanoparticles across metal surfaces. Starting with an outline of the formalism that describes diffusion on surfaces, the authors guide the reader through the principles of atomic movement, before moving on to diffusion under special circumstances, such as the presence of defects or foreign species. With an initial focus on the behaviour of single entities on a surface, later chapters address the movement of clusters of atoms and the interactions between adatoms. While there is a special emphasis on experimental work, attention is paid to the increasingly valuable contributions theoretical work has made in this field. This book has wide interdisciplinary appeal and is ideal for researchers in solid state physics, chemistry as well as materials science, and engineering.




Surface Properties and Engineering of Complex Intermetallics


Book Description

This book, the third in a series of four publications issued annually as a deliverable of the research school established within the European Network of Excellence CMA (for Complex Metallic Alloys), is written by reputed experts in the fields of surface physics and chemistry, metallurgy and process engineering. It combines expertise found inside as well as outside the network. The CMA network focuses on the huge group of largely unknown multinary alloys and compounds formed with crystal structures based on giant unit cells containing clusters, with many tens or up to thousands of atoms per unit cell. In these phases, for many phenomena, the physical length scales are substantially smaller than the unit-cell dimension. Hence, these materials offer unique combinations of properties which are mutually excluded in conventional materials: metallic electric conductivity combined with low thermal conductivity, combination of good light absorption with high-temperature stability, combination of high metallic hardness with reduced wetting by liquids, electrical and thermal resistance tuneable by composition variation, excellent resistance to corrosion, reduced cold-welding and adhesion, enhanced hydrogen storage capacity and light absorption. This book series will concentrate on the: development of fundamental knowledge with the aim of understanding materials phenomena, technologies associated with the production, transformation and processing of knowledge-based multifunctional materials, surface engineering, support for new materials development and new knowledge-based higher performance materials for macro-scale applications.




21st Century Nanoscience – A Handbook


Book Description

21st Century Nanoscience - A Handbook: Low-Dimensional Materials and Morphologies (Volume 4) will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics by the same editor published in the fall of 2010 and was embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. This fourth volume in a ten-volume set covers low-dimensional materials and morphologies. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanophysics extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.




Islands, Mounds and Atoms


Book Description

Crystal growth far from thermodynamic equilibrium is nothing but homoepitaxy - thin film growth on a crystalline substrate of the same material. Because of the absence of misfit effects, homoepitaxy is an ideal playground to study growth kinetics in its pure form. Despite its conceptual simplicity, homoepitaxy gives rise to a wide range of patterns. This book explains the formation of such patterns in terms of elementary atomic processes, using the well-studied Pt/Pt(111) system as a reference point and a large number of Scanning Tunneling Microscopy images for visualization. Topics include surface diffusion, nucleation theory, island shapes, mound formation and coarsening, and layer-by-layer growth. A separate chapter is dedicated to describing the main experimental and theoretical methods. The text is aimed at physicists with an interest in growth kinetics, surface scientists, graduate students, and practitioners of thin film deposition.




21st Century Nanoscience


Book Description

This 21st Century Nanoscience Handbook will be the most comprehensive, up-to-date large reference work for the field of nanoscience. Handbook of Nanophysics, by the same editor, published in the fall of 2010, was embraced as the first comprehensive reference to consider both fundamental and applied aspects of nanophysics. This follow-up project has been conceived as a necessary expansion and full update that considers the significant advances made in the field since 2010. It goes well beyond the physics as warranted by recent developments in the field. Key Features: Provides the most comprehensive, up-to-date large reference work for the field. Chapters written by international experts in the field. Emphasises presentation and real results and applications. This handbook distinguishes itself from other works by its breadth of coverage, readability and timely topics. The intended readership is very broad, from students and instructors to engineers, physicists, chemists, biologists, biomedical researchers, industry professionals, governmental scientists, and others whose work is impacted by nanotechnology. It will be an indispensable resource in academic, government, and industry libraries worldwide. The fields impacted by nanoscience extend from materials science and engineering to biotechnology, biomedical engineering, medicine, electrical engineering, pharmaceutical science, computer technology, aerospace engineering, mechanical engineering, food science, and beyond.




Encyclopedia of Interfacial Chemistry


Book Description

Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, Seven Volume Set summarizes current, fundamental knowledge of interfacial chemistry, bringing readers the latest developments in the field. As the chemical and physical properties and processes at solid and liquid interfaces are the scientific basis of so many technologies which enhance our lives and create new opportunities, its important to highlight how these technologies enable the design and optimization of functional materials for heterogeneous and electro-catalysts in food production, pollution control, energy conversion and storage, medical applications requiring biocompatibility, drug delivery, and more. This book provides an interdisciplinary view that lies at the intersection of these fields. Presents fundamental knowledge of interfacial chemistry, surface science and electrochemistry and provides cutting-edge research from academics and practitioners across various fields and global regions




Multiscale Modeling in Epitaxial Growth


Book Description

Epitaxy is relevant for thin film growth and is a very active area of theoretical research since several years. Recently powerful numerical techniques have been used to link atomistic effects at the film's surface to its macroscopic morphology. This book also serves as an introduction into this highly active interdisciplinary field of research for applied mathematicians, theoretical physicists and computational materials scientists.




Thin Film Growth


Book Description

Thin film technology is used in many applications such as microelectronics, optics, hard and corrosion resistant coatings and micromechanics, and thin films form a uniquely versatile material base for the development of novel technologies within these industries. Thin film growth provides an important and up-to-date review of the theory and deposition techniques used in the formation of thin films.Part one focuses on the theory of thin film growth, with chapters covering nucleation and growth processes in thin films, phase-field modelling of thin film growth and surface roughness evolution. Part two covers some of the techniques used for thin film growth, including oblique angle deposition, reactive magnetron sputtering and epitaxial growth of graphene films on single crystal metal surfaces. This section also includes chapters on the properties of thin films, covering topics such as substrate plasticity and buckling of thin films, polarity control, nanostructure growth dynamics and network behaviour in thin films.With its distinguished editor and international team of contributors, Thin film growth is an essential reference for engineers in electronics, energy materials and mechanical engineering, as well as those with an academic research interest in the topic. - Provides an important and up-to-date review of the theory and deposition techniques used in the formation of thin films - Focusses on the theory and modelling of thin film growth, techniques and mechanisms used for thin film growth and properties of thin films - An essential reference for engineers in electronics, energy materials and mechanical engineering




Physics of Surfaces and Interfaces


Book Description

This graduate-level textbook covers the major developments in surface sciences of recent decades, from experimental tricks and basic techniques to the latest experimental methods and theoretical understanding. It is unique in its attempt to treat the physics of surfaces, thin films and interfaces, surface chemistry, thermodynamics, statistical physics and the physics of the solid/electrolyte interface in an integral manner, rather than in separate compartments. It is designed as a handbook for the researcher as well as a study-text for graduate students. Written explanations are supported by 350 graphs and illustrations.