ISO 10110 Optics and Optical Instruments--Preparation of drawings for optical elements and systems
Author :
Publisher :
Page : 0 pages
File Size : 46,51 MB
Release : 1998
Category :
ISBN :
Author :
Publisher :
Page : 0 pages
File Size : 46,51 MB
Release : 1998
Category :
ISBN :
Author : Ronald K. Kimmel
Publisher :
Page : 98 pages
File Size : 22,14 MB
Release : 2002
Category : Science
ISBN :
Author : Ronald K. Kimmel
Publisher : Optical Society of Amer
Page : 86 pages
File Size : 28,34 MB
Release : 1995-01-01
Category : Technology & Engineering
ISBN : 9781557522719
Author : Paul R. Yoder
Publisher : SPIE Press
Page : 784 pages
File Size : 27,16 MB
Release : 2008
Category : Optical instruments
ISBN : 0819471291
Entirely updated to cover the latest technology, this Second Edition gives optical designers and optomechanical engineers a thorough understanding of the principal ways in which optical components - lenses, windows, filters, shells, domes, prisms, and mirrors of all sizes - are mounted in optical instruments.Along with new information on tolerancing, sealing considerations, elastomeric mountings, alignment, stress estimation, and temperature control, two new chapters address the mounting of metallic mirrors and the alignment of reflective and catadioptric systems.The updated accompanying CD-ROM offers a convenient spreadsheet of the many equations that are helpful in solving problems encountered when mounting optics in instruments.
Author : International Organization for Standardization
Publisher :
Page : 946 pages
File Size : 36,75 MB
Release : 2007
Category : Standardization
ISBN :
Author : International Organization for Standardization
Publisher :
Page : 988 pages
File Size : 30,38 MB
Release : 2008
Category : Standardization
ISBN :
Author : Daniel Vukobratovich
Publisher : CRC Press
Page : 463 pages
File Size : 48,95 MB
Release : 2018-01-29
Category : Science
ISBN : 1498770754
When Galileo designed the tube of his first telescope, optomechanics was born. Concerned with the shape and position of surfaces in an optical system, optomechanics is a subfield of physics that is arguably as old as optics. However, while universities offer courses on the subject, there is a scarcity in textbook selections that skillfully and properly convey optomechanical fundamentals to aspiring engineers. Complemented by tutorial examples and exercises, this textbook rectifies this issue by providing instructors and departments with a better choice for transmitting to students the basic principles of optomechanics and allowing them to comfortably gain familiarity with the field’s content. Practicing optical engineers who engage in self-study and wish to enhance the extent of their knowledge will also find benefit from the vast experience of the authors. The book begins with a discussion of materials based on optomechanical figures of merit and features chapters on windows, prisms, and lenses. The authors also cover topics related to design parameter, mounting small mirrors, metal mirrors with a discussion of infrared applications, and kinematic design. Overall, Fundamentals of Optomechanics outfits students and practitioners with a stellar foundation for exploring the design and support of optical system surfaces under a wide variety of conditions. Provides the fundamentals of optomechanics Presents self-contained, student-friendly prose, written by top scientists in the field Discusses materials, windows, individual lenses and multiple lenses Includes design, mounting, and performance of mirrors Includes homework problems and a solutions manual for adopting professors
Author : Bernd D¿rband
Publisher : John Wiley & Sons
Page : 1005 pages
File Size : 27,80 MB
Release : 2012-05-14
Category : Science
ISBN : 3527403817
The state-of-the-art full-colored handbook gives a comprehensive introduction to the principles and the practice of calculation, layout, and understanding of optical systems and lens design. Written by reputed industrial experts in the field, this text introduces the user to the basic properties of optical systems, aberration theory, classification and characterization of systems, advanced simulation models, measuring of system quality and manufacturing issues. In this Volume Volume 5 topics comprise the methods of measuring the properties of optical systems. The different fundamental techniques, such as propagation measurement and polarimetry, are introduced and discussed in detail and clarity. The presentation allows the reader, after having devised an optical system, to perform the measurements best suited to ascertain that the system fulfills the specific needs and requirements. The following chapters provide a survey on materials, coatings and surfaces of optical components, and combine this with a treatment of light and radiation. The book thus serves as a one-stop reference for metrology of optical systems. Other Volumes Volume 1: Fundamentals of Technical Optics Volume 2: Physical Image Formation Volume 3: Aberration Theory and Correction of Optical Systems Volume 4: Survey of Optical Instruments
Author : Anees Ahmad
Publisher : CRC Press
Page : 508 pages
File Size : 45,58 MB
Release : 2018-12-07
Category : Science
ISBN : 1351832786
Good optical design is not in itself adequate for optimum performance of optical systems. The mechanical design of the optics and associated support structures is every bit as important as the optics themselves. Optomechanical engineering plays an increasingly important role in the success of new laser systems, space telescopes and instruments, biomedical and optical communication equipment, imaging entertainment systems, and more. This is the first handbook on the subject of optomechanical engineering, a subject that has become very important in the area of optics during the last decade. Covering all major aspects of optomechanical engineering - from conceptual design to fabrication and integration of complex optical systems - this handbook is comprehensive. The practical information within is ideal for optical and optomechanical engineers and scientists involved in the design, development and integration of modern optical systems for commercial, space, and military applications. Charts, tables, figures, and photos augment this already impressive handbook. The text consists of ten chapters, each authored by a world-renowned expert. This unique collaboration makes the Handbook a comprehensive source of cutting edge information and research in the important field of optomechanical engineering. Some of the current research trends that are covered include:
Author : Paul Yoder
Publisher : CRC Press
Page : 1672 pages
File Size : 45,32 MB
Release : 2018-12-14
Category : Technology & Engineering
ISBN : 1439839786
Opto-Mechanical Systems Design, Fourth Edition is different in many ways from its three earlier editions: coauthor Daniel Vukobratovich has brought his broad expertise in materials, opto-mechanical design, analysis of optical instruments, large mirrors, and structures to bear throughout the book; Jan Nijenhuis has contributed a comprehensive new chapter on kinematics and applications of flexures; and several other experts in special aspects of opto-mechanics have contributed portions of other chapters. An expanded feature—a total of 110 worked-out design examples—has been added to several chapters to show how the theory, equations, and analytical methods can be applied by the reader. Finally, the extended text, new illustrations, new tables of data, and new references have warranted publication of this work in the form of two separate but closely entwined volumes. The first volume, Design and Analysis of Opto-Mechanical Assemblies, addresses topics pertaining primarily to optics smaller than 50 cm aperture. It summarizes the opto-mechanical design process, considers pertinent environmental influences, lists and updates key parameters for materials, illustrates numerous ways for mounting individual and multiple lenses, shows typical ways to design and mount windows and similar components, details designs for many types of prisms and techniques for mounting them, suggests designs and mounting techniques for small mirrors, explains the benefits of kinematic design and uses of flexures, describes how to analyze various types of opto-mechanical interfaces, demonstrates how the strength of glass can be determined and how to estimate stress generated in optics, and explains how changing temperature affects opto-mechanical assemblies. The second volume, Design and Analysis of Large Mirrors and Structures, concentrates on the design and mounting of significantly larger optics and their structures, including a new and important topic: detailed consideration of factors affecting large mirror performance. The book details how to design and fabricate very large single-substrate, segmented, and lightweight mirrors; describes mountings for large mirrors with their optical axes in vertical, horizontal, and variable orientations; indicates how metal and composite mirrors differ from ones made of glass; explains key design aspects of optical instrument structural design; and takes a look at an emerging technology—the evolution and applications of silicon and silicon carbide in mirrors and other types of components for optical applications.