STEM Project-Based Learning


Book Description

This second edition of Project-Based Learning (PBL) presents an original approach to Science, Technology, Engineering and Mathematics (STEM) centric PBL. We define PBL as an “ill-defined task with a well-defined outcome,” which is consistent with our engineering design philosophy and the accountability highlighted in a standards-based environment. This model emphasizes a backward design that is initiated by well-defined outcomes, tied to local, state, or national standard that provide teachers with a framework guiding students’ design, solving, or completion of ill-defined tasks. This book was designed for middle and secondary teachers who want to improve engagement and provide contextualized learning for their students. However, the nature and scope of the content covered in the 14 chapters are appropriate for preservice teachers as well as for advanced graduate method courses. New to this edition is revised and expanded coverage of STEM PBL, including implementing STEM PBL with English Language Learners and the use of technology in PBL. The book also includes many new teacher-friendly forms, such as advanced organizers, team contracts for STEM PBL, and rubrics for assessing PBL in a larger format.




The Case for STEM Education


Book Description

"If you are interested in STEM education, policies, programs or practices, or you work on STEM in some capacity at any level, The case for STEM education will prove to be valuable reading. Author Rodger W. Bybee has written this book to inspire individuals in leadership roles to better understand and take action on STEM initiatives. The book's 10 chapters accomplish several tasks: Put STEM in context by outlining the challenges facing STEM education, drawing lessons from the Sputnik moment of the 1950s and 1960s, and contrasting contemporary STEM with other education reforms; Explore appropriate roles for the federal government, as well as states, districts, and individual schools; Offer several ideas and recommendations you can use to develop action plans for STEM. With an emphasis on both thinking and acting, The case for STEM education is a must-read for leaders at all levels: national and state policy makers, state-level educators responsible for STEM initiatives, college and university faculty who educate future STEM teachers, local administrators who make decisions about district and school programs, and teachers who represent STEM disciplines." - Back cover.




The Testing Charade


Book Description

America's leading expert in educational testing and measurement openly names the failures caused by today's testing policies and provides a blueprint for doing better. 6 x 9.




Science Education Issues and Developments


Book Description

Science Education Issues and Developments.




Contributions from Science Education Research


Book Description

In August 2005, over 500 researchers from the field of science education met at the 5th European Science Education Research Association conference. Two of the main topics at this conference were: the decrease in the number of students interested in school science and concern about the worldwide outcomes of studies on students’ scientific literacy. This volume includes edited versions of 37 outstanding papers presented, including the lectures of the keynote speakers.




Argumentation in Science Education


Book Description

Educational researchers are bound to see this as a timely work. It brings together the work of leading experts in argumentation in science education. It presents research combining theoretical and empirical perspectives relevant for secondary science classrooms. Since the 1990s, argumentation studies have increased at a rapid pace, from stray papers to a wealth of research exploring ever more sophisticated issues. It is this fact that makes this volume so crucial.




Education at a Glance 2011 OECD Indicators


Book Description

The 2011 edition of Education at a Glance enables countries to see themselves in the light of other countries’ performance. It provides a broad array of comparable indicators on education systems and represents the consensus of professional thinking on how to measure education internationally.




Teaching Science in Secondary Schools


Book Description

A companion to Aspects of Teaching Secondary Science, the first section of this reader provides an overview of the key issues, discussing the nature of science and its role in the school curriculum. The second section goes on to examine critically the ways in which science is reflected in the school curriculum, while the third section discusses recent curriculum initiatives and developments. Turning the focus from what is taught on to who is taught, section four shows that students are very much active learners in the classroom, making sense of their experiences and constructing their own meanings. The final section covers the role of research in science education, giving examples of research papers and considering how productive collaboration between teachers and researchers can impact upon the effectiveness of classroom practice.




A Framework for K-12 Science Education


Book Description

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.