Book Description
This paper develops a new invariant of a CW-complex called the m-structure and uses it to perform homotopy-theoretic computations. The m-structure of a space encapsulates the coproduct structure, as well as higher-coproduct structures that determine Steenrod-operations. Given an m-structure on the chain complex of a reduced simplicial complex of a pointed simply-connected space, one can equip the cobar construction of this chain-complex with a natural m-structure. This result allows one to form iterated cobar constructions that are shown to be homotopy equivalent to iterated loop-spaces.