Commercial Aircraft Propulsion and Energy Systems Research


Book Description

The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.




Green Energy to Sustainability: Strategies for Global Industries


Book Description

Reviews the latest advances in biofuel manufacturing technologies and discusses the deployment of other renewable energy for transportation Aimed at providing an interface useful to business and scientific managers, this book focuses on the key challenges that still impede the realization of the billion-ton renewable fuels vision. It places great emphasis on a global view of the topic, reviewing deployment and green energy technology in different countries across Africa, Asia, South America, the EU, and the USA. It also integrates scientific, technological, and business development perspectives to highlight the key developments that are necessary for the global replacement of fossil fuels with green energy solutions. Green Energy to Sustainability: Strategies for Global Industries examines the most recent developments in biofuel manufacturing technologies in light of business, financial, value chain, and supply chain concerns. It also covers the use of other renewable energy sources like solar energy for transportation and proposes a view of the challenges over the next two to five decades, and how these will deeply modify the industrial world in the third millennium. The coming of age of electric vehicles is also looked at, as is the impact of their deployment on the biomass to biofuels value chain. Offers extensive updates on the field of green energy for global industries Covers the structure of the energy business; chemicals and diesel from biomass; ethanol and butanol; hydrogen and methane; and more Provides an expanded focus on the next generation of energy technologies Reviews the latest advances in biofuel manufacturing technologies Integrates scientific, technological and business perspectives Highlights important developments needed for replacing fossil fuels with green energy Green Energy to Sustainability: Strategies for Global Industries will appeal to academic researchers working on the production of fuels from renewable feedstocks and those working in green and sustainable chemistry, and chemical/process engineering. It is also an excellent textbook for courses in bioprocessing technology, renewable resources, green energy, and sustainable chemistry.




Biokerosene


Book Description

This book provides a detailed overview of aspects related to the overall provision chain for biokerosene as part of the global civil aviation business. Starting with a review of the current market situation for aviation fuels and airplanes and their demands, it then presents in-depth descriptions of classical and especially new types of non-edible biomass feedstock suitable for biokerosene provision. Subsequent chapters discuss those fuel provision processes that are already available and those still under development based on various biomass feedstock materials, and present e.g. an overview of the current state of the art in the production of a liquid biomass-based fuel fulfilling the specifications for kerosene. Further, given the growing interest of the aviation industry and airlines in biofuels for aviation, the experiences of an air-carrier are presented. In closing, the book provides a market outlook for biokerosene. Addressing a broad range of aspects related to the pros and cons of biokerosene as a renewable fuel for aviation, the book offers a unique resource.




Sustainable Aviation


Book Description

This book provides readers with a basic understanding of the concepts and methodologies of sustainable aviation.The book is divided into three sections : basic principles the airport side, and the aircraft side. In-depth chapters discuss the key elements of sustainable aviation and provide complete coverage of essential topics including airport, energy, and noise management along with novel technologies, standards and a review of the current literature on green airports, sustainable aircraft design, biodiversity management, and alternative fuels. Engineers, researchers and students will find the fundamental approach useful and will benefit from the many engineering examples and solutions provided.




Jet Fuel Journey to Sustainable Aviation


Book Description

"Eager to lead the conversation on the next big thing in aviation? Uncover the revolutionary world of sustainable aviation fuels today." Do you ever wonder how the aviation industry can combat its environmental impact? Imagine a future where flights don't leave a carbon footprint. The aviation sector stands at a critical crossroads, facing intense scrutiny for its environmental footprint. "Jet Fuel Journey to Sustainable Aviation," penned by Chuck Wright, an advocate for sustainable aviation fuels, offers an in-depth look at the industry's transition towards sustainable alternatives. This book explores the historical reliance on fossil fuels, the pressing environmental challenges, and the pioneering development of sustainable aviation fuels (SAFs). It delves into the technological advancements, economic factors, and regulatory frameworks that are shaping this transformation. For industry professionals, policymakers, and enthusiasts, this narrative not only educates but also inspires action towards a greener aviation future. "Jet Fuel Journey to Sustainable Aviation" highlights how embracing sustainable practices can not only reduce carbon emissions but also propel the industry forward. Key Features: Historical Context: Traces the evolution of aviation fuels, focusing on milestones and technological advancements. Types of Aviation Fuels: A detailed examination of various aviation fuels, including Jet A, Jet A-1, and their characteristics. Sustainable Aviation Fuel (SAF): Insight into bio-components and eco-friendly alternatives in aviation fuel. Environmental Impact: Discussion on the ecological considerations and efforts to reduce the carbon footprint of aviation. Technological Innovations: Highlights advancements in fuel technology, exploring biofuels and hydrogen. Global Standards and Regulations: Overview of international specifications and standards governing aviation fuels, and the importance of adhering to these for safe and efficient aviation. Future Trends and Technologies: Exploration of emerging trends and potential future advancements in aviation fuel technologies. Production and Refining Processes: The processes involved in the production and refining of aviation fuels. Quality Control and Standards: Insights into the quality control measures and international standards that ensure the safety and reliability of aviation fuels. Storage and Distribution: Examination of the storage and distribution networks essential for the supply of aviation fuels. This book provides the tools and knowledge necessary to understand and participate in the aviation industry's energy transition. It serves as a valuable resource for understanding the complex world of aviation fuels and the journey toward sustainable aviation. It's perfect for industry professionals, researchers, students, and aviation enthusiasts. Buy Jet Fuel Journey to Sustainable Aviation today and embark on a flight towards a sustainable future!




Biofuels Production and Processing Technology


Book Description

The importance of biofuels in greening the transport sector in the future is unquestionable, given the limited available fossil energy resources, the environmental issues associated to the utilization of fossil fuels, and the increasing attention to security of supply. This comprehensive reference presents the latest technology in all aspects of biofuels production, processing, properties, raw materials, and related economic and environmental aspects. Presenting the application of methods and technology with minimum math and theory, it compiles a wide range of topics not usually covered in one single book. It discusses development of new catalysts, reactors, controllers, simulators, online analyzers, and waste minimization as well as design and operational aspects of processing units and financial and economic aspects. The book rounds out by describing properties, specifications, and quality of various biofuel products and new advances and trends towards future technology.




Green Aviation


Book Description

Green Aviation is the first authoritative overview of both engineering and operational measures to mitigate the environmental impact of aviation. It addresses the current status of measures to reduce the environmental impact of air travel. The chapters cover such items as: Engineering and technology-related subjects (aerodynamics, engines, fuels, structures, etc.), Operations (air traffic management and infrastructure) Policy and regulatory aspects regarding atmospheric and noise pollution. With contributions from leading experts, this volume is intended to be a valuable addition, and useful resource, for aerospace manufacturers and suppliers, governmental and industrial aerospace research establishments, airline and aviation industries, university engineering and science departments, and industry analysts, consultants, and researchers.




Future Propulsion Systems and Energy Sources in Sustainable Aviation


Book Description

A comprehensive review of the science and engineering behind future propulsion systems and energy sources in sustainable aviation Future Propulsion Systems and Energy Sources in Sustainable Aviation is a comprehensive reference that offers a review of the science and engineering principles that underpin the concepts of propulsion systems and energy sources in sustainable air transportation. The author, a noted expert in the field, examines the impact of air transportation on the environment and reviews alternative jet fuels, hybrid-electric and nuclear propulsion and power. He also explores modern propulsion for transonic and supersonic-hypersonic aircraft and the impact of propulsion on aircraft design. Climate change is the main driver for the new technology development in sustainable air transportation. The book contains critical review of gas turbine propulsion and aircraft aerodynamics; followed by an insightful presentation of the aviation impact on environment. Future fuels and energy sources are introduced in a separate chapter. Promising technologies in propulsion and energy sources are identified leading to pathways to sustainable aviation. To facilitate the utility of the subject, the book is accompanied by a website that contains illustrations, and equation files. This important book: Contains a comprehensive reference to the science and engineering behind propulsion and power in sustainable air transportation Examines the impact of air transportation on the environment Covers alternative jet fuels and hybrid-electric propulsion and power Discusses modern propulsion for transonic, supersonic and hypersonic aircraft Examines the impact of propulsion system integration on aircraft design Written for engineers, graduate and senior undergraduate students in mechanical and aerospace engineering, Future Propulsion Systems and Energy Sources in Sustainable Aviation explores the future of aviation with a guide to sustainable air transportation that includes alternative jet fuels, hybrid-electric propulsion, all-electric and nuclear propulsion.




Towards Sustainable Aviation


Book Description

First Published in 2003. Routledge is an imprint of Taylor & Francis, an informa company.




Liquid Biofuels


Book Description

Compiled by a well-known expert in the field, Liquid Biofuels provides a profound knowledge to researchers about biofuel technologies, selection of raw materials, conversion of various biomass to biofuel pathways, selection of suitable methods of conversion, design of equipment, selection of operating parameters, determination of chemical kinetics, reaction mechanism, preparation of bio-catalyst: its application in bio-fuel industry and characterization techniques, use of nanotechnology in the production of biofuels from the root level to its application and many other exclusive topics for conducting research in this area. Written with the objective of offering both theoretical concepts and practical applications of those concepts, Liquid Biofuels can be both a first-time learning experience for the student facing these issues in a classroom and a valuable reference work for the veteran engineer or scientist. The description of the detailed characterization methodologies along with the precautions required during analysis are extremely important, as are the detailed description about the ultrasound assisted biodiesel production techniques, aviation biofuels and its characterization techniques, advance in algal biofuel techniques, pre-treatment of biomass for biofuel production, preparation and characterization of bio-catalyst, and various methods of optimization. The book offers a comparative study between the various liquid biofuels obtained from different methods of production and its engine performance and emission analysis so that one can get the utmost idea to find the better biofuel as an alternative fuel. Since the book covers almost all the field of liquid biofuel production techniques, it will provide advanced knowledge to the researcher for practical applications across the energy sector. A valuable reference for engineers, scientists, chemists, and students, this volume is applicable to many different fields, across many different industries, at all levels. It is a must-have for any library.