Welding and Joining of Advanced High Strength Steels (AHSS)


Book Description

Welding and Joining of Advanced High Strength Steels (AHSS): The Automotive Industry discusses the ways advanced high strength steels (AHSS) are key to weight reduction in sectors such as automotive engineering. It includes a discussion on how welding can alter the microstructure in the heat affected zone, producing either excessive hardening or softening, and how these local changes create potential weaknesses that can lead to failure. This text reviews the range of welding and other joining technologies for AHSS and how they can be best used to maximize the potential of AHSS. - Reviews the properties and manufacturing techniques of advanced high strength steels (AHSS) - Examines welding processes, performance, and fatigue in AHSS - Focuses on AHSS welding and joining within the automotive industry




Joining of Stainless Steels


Book Description




Stainless Steels


Book Description

ASM Specialty Handbook® Stainless Steels The best single-volume reference on the metallurgy, selection, processing, performance, and evaluation of stainless steels, incorporating essential information culled from across the ASM Handbook series. Includes additional data and reference information carefully selected and adapted from other authoritative ASM sources.




Introduction to Stainless Steels


Book Description

Designed as a basic and introductory reference, this book not only addresses stainless steels in the light of their resistance to corrosion for which they are more commonly recognised, but also explains the wide range of other useful properties attributable to the various and specific categories of these alloys. This book is a concise, easy-to-read introduction to one of the most widely used industrial materials. Each chapter explains an important concept related to the selection, application, processing and use of stainless steels. This book is indexed and includes appendices: (1) Identification of Stainless Steels in Service (2) Toxicity of Stainless Steel (3) Table of Equivalent Designations (this is not intended to be complete, but includes the more commonly used stainless steels and the most widely used designation systems). First published in 1965 and updated in 1986, this third edition is a completely new text.




Joining of Titanium


Book Description

This report supplies information on joining processes applicable to titanium and its alloys in sheet metal applications, primarily related directly to airframe construction. Although the material presented here does not cover all titanium joining processes, and omits such processes as plasma-arc, submerged-arc, electroslag, flash, and high-frequency resistance welding, the data presented cover materials up to 2-inches thick in some cases and the report should be useful to anyone seeking titanium joining information. The joining processes covered fall into five categories: welding, brazing, metallurgical bonding (diffusion and deformation bonding), adhesive bonding, and mechanical fastening. The fusion welding processes that are discussed in detail include gas tungsten arc, gas metal arc, arc spot, and electron beam. The resistance processes give extended coverage are spot, roll spot, and seam welding. (Author).




Advances in Structural Adhesive Bonding


Book Description

Adhesive bonding is often effective, efficient, and often necessary way to join mechanical structures. This important book reviews the most recent improvements in adhesive bonding and their wide-ranging potential in structural engineering.Part one reviews advances in the most commonly used groups of structural adhesives with chapters covering topics such as epoxy, polyurethane, silicone, cyanoacrylate, and acrylic adhesives. The second set of chapters covers the various types of adherends and pre-treatment methods for a range of structural materials such as metals, composites and plastics. Chapters in Part three analyse methods and techniques with topics on joint design, life prediction, fracture mechanics and testing. The final group of chapters gives useful and practical insights into the problems and solutions of adhesive bonding in a variety of hostile environments such as chemical, wet and extreme temperatures.With its distinguished editor and international team of contributors, Advances in structural adhesive bonding is a standard reference for structural and chemical engineers in industry and the academic sector. - Reviews advances in the most commonly used groups of structural adhesives including epoxy, silicone and acrylic adhesives - Examines key issues in adhesive selection featuring substrate compatibility and manufacturing demands - Documents advances in bonding metals, plastics and composites recognising problems and limitations




Austenitic Stainless Steels


Book Description

Stainless steel is still one of the fastest growing materials. Today, the austenitic stainless steel with the classic composition of 18% Cr and 8% Ni (grade 304L) is still the most widely used by far in the world. The unique characteristic of stainless steel arises from three main factors. The versatility results from high corrosion resistance, excellent low- and high-temperature properties, high toughness, formability, and weldability. The long life of stainless steels has been proven in service in a wide range of environments, together with low maintenance costs compared to other highly alloyed metallic materials. The retained value of stainless steel results from the high intrinsic value and easy recycling. Stainless steel, especially of austenitic microstructure, plays a crucial role in achieving sustainable development nowadays, so it is also important for further generations.




Welding Metallurgy and Weldability of Nickel-Base Alloys


Book Description

The most up-to-date coverage of welding metallurgy aspects and weldability issues associated with Ni-base alloys Welding Metallurgy and Weldability of Nickel-Base Alloys describes the fundamental metallurgical principles that control the microstructure and properties of welded Ni-base alloys. It serves as a practical how-to guide that enables engineers to select the proper alloys, filler metals, heat treatments, and welding conditions to ensure that failures are avoided during fabrication and service. Chapter coverage includes: Alloying additions, phase diagrams, and phase stability Solid-solution strengthened Ni-base alloys Precipitation strengthened Ni-base alloys Oxide dispersion strengthened alloys and nickel aluminides Repair welding of Ni-base alloys Dissimilar welding Weldability testing High-chromium alloys used in nuclear power applications With its excellent balance between the fundamentals and practical problem solving, the book serves as an ideal reference for scientists, engineers, and technicians, as well as a textbook for undergraduate and graduate courses in welding metallurgy.




Corrosion Resistance of Stainless Steels


Book Description

This work examines the corrosion of stainless steels and similar chromium-bearing nickel-containing higher alloys, detailing various corrosive environments, including atmospheric and fire-side corrosion, corrosion by water and soil, and corrosion caused by particular industrial processes. It presents the acceptable isocorosion parameters of concentration and temperature for over 250 chemicals for which stainless alloys are the preferred materials of construction.




Stainless Steels for Design Engineers


Book Description

The rate of growth of stainless steel has outpaced that of other metals and alloys, and by 2010 may surpass aluminum as the second most widely used metal after carbon steel. The 2007 world production of stainless steel was approximately 30,000,000 tons and has nearly doubled in the last ten years. This growth is occurring at the same time that the production of stainless steel continues to become more consolidated. One result of this is a more widespread need to understand stainless steel with fewer resources to provide that information. The concurrent technical evolution in stainless steel and increasing volatility of raw material prices has made it more important for the engineers and designers who use stainless steel to make sound technical judgments about which stainless steels to use and how to use them.