Chemical Biomarkers in Aquatic Ecosystems


Book Description

This textbook provides a unique and thorough look at the application of chemical biomarkers to aquatic ecosystems. Defining a chemical biomarker as a compound that can be linked to particular sources of organic matter identified in the sediment record, the book indicates that the application of these biomarkers for an understanding of aquatic ecosystems consists of a biogeochemical approach that has been quite successful but underused. This book offers a wide-ranging guide to the broad diversity of these chemical biomarkers, is the first to be structured around the compounds themselves, and examines them in a connected and comprehensive way. This timely book is appropriate for advanced undergraduate and graduate students seeking training in this area; researchers in biochemistry, organic geochemistry, and biogeochemistry; researchers working on aspects of organic cycling in aquatic ecosystems; and paleoceanographers, petroleum geologists, and ecologists. Provides a guide to the broad diversity of chemical biomarkers in aquatic environments The first textbook to be structured around the compounds themselves Describes the structure, biochemical synthesis, analysis, and reactivity of each class of biomarkers Offers a selection of relevant applications to aquatic systems, including lakes, rivers, estuaries, oceans, and paleoenvironments Demonstrates the utility of using organic molecules as tracers of processes occurring in aquatic ecosystems, both modern and ancient




Nanoparticles


Book Description

The integration of top-down lithographic techniques with synthetic organic and inorganic technologies is a key challenge for the development of effective nanosca1e devices. In terms of assembly, nanoparticles provide an excellent tool for bridging the gap between the resolution of electron beam lithography (-60 nm) and the molecular level. Nanoparticles possess an array of unique properties associated with their core materials, including distinctive magnetic, photonic and electronic behavior. This behavior can be controlled and applied through monolayer functionalization and assembly strategies, making nanoparticles both scaffolds and building blocks for nanotechnology. The diverse structures and properties of nanoparticles makes them useful tools for both fundamental studies and pragmatic applications in a range of disciplines. This volume is intended to provide an integrated overview of the synthesis and assembly of nanoparticles, and their applications in chemistry, biology, and materials science. The first three chapters focus on the creation and intrinsic properties of nanoparticles, covering some of the myriad core materials and shapes that have been created. The remaining chapters of the book discuss the assembly of nanoparticles, and applications of both discrete particles and particle assemblies in a wide range of fields, including device and sensor fabrication, catalysis, biology, and nanosca1e electronic and magnetic systems.




Nano and Bio-Based Technologies for Wastewater Treatment


Book Description

Presents recent challenges related to new forms of pollution from industries and discusses adequate state-of-the-art technologies capable to remediate such forms of pollution. Over the past few decades the boom in the industrial sector has contributed to the release in the environment of pollutants that have no regulatory status and which may have significant impact on the health of humans and animals. These pollutants also referred to as "emerging pollutants", are mostly aromatic compounds which derive from excretion of pharmaceutical, industrial effluents and municipal discharge. It is recurrent these days to find water treatment plants which no longer produce water that fits the purpose of domestic consumption based on newly established guidelines. This situation has prompted water authorities and researchers to develop tools for proper prediction and control of the dispersion of pollutants in the environment to ensure that appropriate measures are taken to prevent the occurrence of outbreaks due to sudden load of these pollutants in the water system. The chapters in this book cover a wide range of nano and bio-based techniques that have been designed for the real time detection of emerging contaminants in environmental water sources, geochemical models that are continuously improved for the prediction of inorganic contaminants migration from the mine solid wastes into ground and surface waters. Remediation strategies are also discussed and include effective techniques based on nanotechnology, advanced membrane filtration, oxidative and bio-degradation processes using various types of nanocatalysts, biocatalysts or supporting polymer matrices which are under advanced investigations for their implementation at large scale for the removal of recalcitrant pollutants from polluted water. Nano and Bio-Based Technologies for Wastewater Treatment: Prediction and Control Tools for the Dispersion of Pollutants in the Environment is divided is two sections. The first section covers the occurrence of emerging pollutants in environmental water while the second section covers state-of-the-art research on the removal of emerging pollutants from water using sustainable technologies. A total of 13 chapters addressing various topics related to the two sections are essentially based on recent developments in the respective field which could have a significant impact on the enhancement of the performance of wastewater treatment plants around the world, and especially in developing countries where access to clean and safe water remains a daily challenge.




Algae Based Polymers, Blends, and Composites


Book Description

Algae Based Polymers, Blends, and Composites: Chemistry, Biotechnology and Material Sciences offers considerable detail on the origin of algae, extraction of useful metabolites and major compounds from algal bio-mass, and the production and future prospects of sustainable polymers derived from algae, blends of algae, and algae based composites. Characterization methods and processing techniques for algae-based polymers and composites are discussed in detail, enabling researchers to apply the latest techniques to their own work. The conversion of bio-mass into high value chemicals, energy, and materials has ample financial and ecological importance, particularly in the era of declining petroleum reserves and global warming. Algae are an important source of biomass since they flourish rapidly and can be cultivated almost everywhere. At present the majority of naturally produced algal biomass is an unused resource and normally is left to decompose. Similarly, the use of this enormous underexploited biomass is mainly limited to food consumption and as bio-fertilizer. However, there is an opportunity here for materials scientists to explore its potential as a feedstock for the production of sustainable materials. - Provides detailed information on the extraction of useful compounds from algal biomass - Highlights the development of a range of polymers, blends, and composites - Includes coverage of characterization and processing techniques, enabling research scientists and engineers to apply the information to their own research and development - Discusses potential applications and future prospects of algae-based biopolymers, giving the latest insight into the future of these sustainable materials




Sustainable Agrochemistry


Book Description

This book presents a broad range of technologies for sustainable agrochemistry, e.g. semiochemicals for pest management, nanotechnology for release of eco-friendly agrochemicals, and green chemistry principles for agriculture. It provides a concise introduction to sustainable agrochemistry for a professional audience, and highlights the main scientific and technological approaches that can be applied to modern agrochemistry. It also discusses various available technologies for reducing the negative impacts of agrochemicals on the environment and human health.




New Trends in Fluorescence Spectroscopy


Book Description

This first volume in the new Springer Series on Fluorescence brings together fundamental and applied research from this highly interdisciplinary and field, ranging from chemistry and physics to biology and medicine. Special attention is given to supramolecular systems, sensor applications, confocal microscopy and protein-protein interactions. This carefully edited collection of articles is an invaluable tool for practitioners and novices.




Micromanufacturing and Nanotechnology


Book Description

Micromanufacturing and Nanotechnology is an emerging technological infrastructure and process that involves manufacturing of products and systems at the micro and nano scale levels. Development of micro and nano scale products and systems are underway due to the reason that they are faster, accurate and less expensive. Moreover, the basic functional units of such systems possesses remarkable mechanical, electronic and chemical properties compared to the macro-scale counterparts. Since this infrastructure has already become the prefered choice for the design and development of next generation products and systems it is now necessary to disseminate the conceptual and practical phenomenological know-how in a broader context. This book incorporates a selection of research and development papers. Its scope is the history and background, underlynig design methodology, application domains and recent developments.




Nanotechnology in Biology and Medicine


Book Description

The combination of biology and nanotechnology has led to a new generation of nanodevices that make it possible to characterize the chemical, mechanical, and other molecular properties, as well as discover novel phenomena and biological processes occurring at the molecular level. These advances provide science with a wide range of tools for biomedical applications in therapeutic, diagnostic, and preventive medicine. Nanotechnology in Biology and Medicine: Methods, Devices, and Applications integrates interdisciplinary research and recent advances in instrumentation and methods for applying nanotechnology to various areas in biology and medicine. Pioneers in the field describe the design and use of nanobiosensors with various analytical techniques for the detection and monitoring of specific biomolecules, including cancer cells. The text focuses on the design of novel bio-inspired materials, particularly for tissue engineering applications. Each chapter provides introductory material including a description of methods, protocols, instrumentation, and applications, as well as a collection of published data with an extensive list of references. An authoritative reference written for a broad audience, Nanotechnology in Biology and Medicine: Methods, Devices, and Applications provides a comprehensive forum that integrates interdisciplinary research to present the most recent advances in protocols, methods, instrumentation, and applications of nanotechnology in biology and medicine.




Applied Theoretical Organic Chemistry


Book Description

This book provides state-of-the-art information on how studies in applied theoretical organic chemistry are conducted. It highlights the many approaches and tools available to those interested in using computational chemistry to predict and rationalize structures and reactivity of organic molecules. Chapters not only describe theoretical techniques in detail, but also describe recent applications and offer practical advice.Authored by many of the world leaders in the field of applied theoretical chemistry, this book is perfect for both practitioners of computational chemistry and synthetic and mechanistic organic chemists curious about applying computational techniques to their research.Related Link(s)




Redox-Active Therapeutics


Book Description

This essential volume comprehensively discusses redox-active therapeutics, focusing particularly on their molecular design, mechanistic, pharmacological and medicinal aspects. The first section of the book describes the basic aspects of the chemistry and biology of redox-active drugs and includes a brief overview of the redox-based pathways involved in cancer and the medical aspects of redox-active drugs, assuming little in the way of prior knowledge. Subsequent sections and chapters describe more specialized aspects of central nervous system injuries, neurodegenerative diseases, pain, radiation injury and radioprotection (such as of brain, lungs, head and neck and erectile function) and neglected diseases (e.g., leishmaniasis). It encompasses several major classes of redox-active experimental therapeutics, which include porphyrins, salens, nitrones, and most notably metal-containing (e.g., Mn, Fe, Cu, Zn, Sb) drugs as either single compounds or formulations with nanomaterials and quantum dots. Numerous illustrations, tables and figures enhance and complement the text; extensive references to relevant literature are also included. Redox-Active Therapeutics is an invaluable addition to Springer’s Oxidative Stress in Applied Basic Research and Clinical Practice series. It is essential reading for researchers, clinicians and graduate students interested in understanding and exploring the Redoxome—the organism redox network—as an emerging frontier in drug design, redox biology and medicine.