Fundamentals and Frontiers of the Josephson Effect


Book Description

This book provides a comprehensive and up-to-date description of the Josephson effect, a topic of never-ending interest in both fundamental and applied physics. In this volume, world-renowned experts present the unique aspects of the physics of the Josephson effect, resulting from the use of new materials, of hybrid architectures and from the possibility of realizing nanoscale junctions. These new experimental capabilities lead to systems where novel coherent phenomena and transport processes emerge. All this is of great relevance and impact, especially when combined with the didactic approach of the book. The reader will benefit from a general and modern view of coherent phenomena in weakly-coupled superconductors on a macroscopic scale. Topics that have been only recently discussed in specialized papers and in short reviews are described here for the first time and organized in a general framework. An important section of the book is also devoted to applications, with focus on long-term, future applications. In addition to a significant number of illustrations, the book includes numerous tables for comparative studies on technical aspects.




Superconductor/Semiconductor Junctions


Book Description

This book, featuring the most comprehensive treatment of Josephson junctions ever published, describes superconductor/two-dimensional-electron-gas (2DEG) structures, providing a better understanding of their transport properties. It also discusses the control of junctions using gate electrodes or injection currents, and the physical effects observed in these junctions.




New Topics in Josephson Junction and Superconductivity Research


Book Description

The Josephson Junction is a type of electronic circuit capable of switching at very high speeds when operated at temperatures approaching absolute zero. It exploits the phenomenon of superconductivity, the ability of certain materials to conduct electric current with practically zero resistance. This book presents new and important research in superconductivity. This includes optical properties, magneto-optics and surface acoustic waves, microwave responses, theories of superconductivity, synthesis in electronic applications and high temperature superconductivity.




Josephson Junction and Superconductivity Research


Book Description

A Josephson Junction is a type of electronic circuit capable of switching at very high speeds when operated at temperatures approaching absolute zero. The Josephson Junction exploits the phenomenon of superconductivity, the ability of certain materials to conduct electric current with practically zero resistance. This book presents new and important research in superconductivity. This book presents leading research from around the world in this exciting field. This includes fabrication techniques, unconventional superconductors, Josephson tunnel junctions, Josephson vortex behaviour, thermomagnetic shock waves and finite temperature effects.




Physics and Applications of the Josephson Effect


Book Description

Cover -- Contents -- CHAPTER 1 Weak Superconductivity8212; Phenomenological Aspects -- 146;1 Macroscopic Quantum System -- 146;2 Coupled Superconductors -- 146;3 Single Electron Tunneling -- 146;4 Josephson Equations -- 146;5 Magnetic Field Effects -- 146;6 Barrier Free Energy -- 146;7 Electrodynamics of the Josephson Junction -- 146;8 Other Josephson Structures -- CHAPTER 2 Microscopic Theory -- 1 Tunneling Hamiltonian Formalism -- 2 General Expression for the Total Current -- 3 Tunneling Current for Constant Voltage -- 4 Expressions of Iqpi44; Iqp44; IJ144; IJ2 -- 5 Tunneling Current in the B46;C46;S46; Approximation -- 6 The 34;cos w34; Problem -- CHAPTER 3 Magnitude and Temperature Dependence of the Critical Current -- 346;1 Josephson Current for V61;0 -- 346;2 B46;C46;S46; Approximation -- 346;3 Strong Coupling Effects -- 346;4 Effects of Paramagnetic Impurities -- 346;5 Measurement Techniques -- CHAPTER 4 34;Small34; Junctions in a Magnetic Field -- 446;1 Josephson Penetration Depth -- 446;2 Small Junctions -- 446;3 Uniform Tunneling Current Distribution -- 446;4 Nonuniform Tunneling Current Density -- CHAPTER 5 Large Junctions8212;Static Self45;Field Effects -- 546;1 Approximate Analysis -- 546;2 Analysis of Owen and Scalapino -- 546;3 Effects of the Junction Geometrical Configuration -- CHAPTER 6 Voltage Current Characteristics -- 646;1 V45;I Curves of Various Weak Links -- 646;2 Resistively Shunted Junction Model58; Autonomous Case -- 646;3 Current Biased Tunneling Junction -- 646;4 Effects of Thermal Fluctuations -- CHAPTER 7 Other Superconducting Weak Link Structures -- 746;1 Metal Barrier Junctions -- 746;2 Semiconducting Barrier Junctions -- 746;3 Bridge45;Type Junctions -- 746;4 Point Contact Weak Links -- CHAPTER 8 Device Fabrication Technology -- 846;1 Josephson Tunneling Junctions -- 846;2 Junction Electrodes -- 846;3 Oxide Barriers -- 846;4 Junction Patterning -- 846;5 Simple Procedures for Preparing Oxide Barrier Junctions -- 846;6 Semiconductor Barriers -- 846;7 Bridge45;Type Weak Links -- 846;8 Point Contact Structures -- CHAPTER 9 Resonant Modes In Tunneling Structures -- 946;1 Josephson Junction as a Transmission Line -- 946;2 Resonant Modes for Low Q Junctions -- 946;3 Junction of Infinite Length -- 946;4 Nonuniform Current Density Distribution -- CHAPTER 10 Fluxon Dynamics -- 1046;1 The Sine Gordon Equation -- 1046;2 Nonlinear Standing Waves on a Rectangular Junction -- 1046;3 Effects of Losses and Bias -- 1046;4 Zero Field Steps -- 1046;5 Perturbative Analysis of Fluxon Dynamics -- 1046;6 Effects of Flux Flow on D46;C46; Voltage45;Current Characteristics -- 1046;7 Two Dimensional Junctions -- CHAPTER 11 High Frequency Properties and Applications of the Josephson Effect -- 1146;1 Simple Voltage Source Model -- 1146;2 Tunneling Junctions in External Microwave Radiation -- 1146;3 Current Source Model -- 1146;4 Emission of Radiation -- 1146;5 Detection of Radiation -- 1146;6 Parametric Amplification -- 1146;7 The Determina.




Josephson Junctions


Book Description

This book summarizes the history and present status and applications of Josephson junctions. These devices are leading elements in superconducting electronics and provide state-of-the-art performance in detection of small magnetic fields and currents, in several digital computing methods, and in medical diagnostic devices and now provide voltage standards used worldwide. Astronomical infrared (IR) telescopes, including the South Pole Telescope, use these junctions in combinations called superconducting quantum interference devices (SQUIDs).




History and Theory of Superconductors


Book Description

Rudolf P. Huebener presents the field of superconductivity research in a clear and compact way. He vividly describes how this area has developed in many directions since the discovery of superconductivity more than 100 years ago. This concerns materials, experiments on the physical principles, theoretical understanding and technical applications. Among other things, the essential deals with the Meissner-Ochsenfeld effect, magnetic flux quantization, the Josephson effect, the BCS theory and high-temperature superconductivity. This Springer essential is a translation of the original German 1st edition essentials, Geschichte und Theorie der Supraleiter by Rudolf P. Huebener, published by Springer Fachmedien Wiesbaden GmbH, part of Springer Nature in 2017. The translation was done with the help of artificial intelligence (machine translation by the service DeepL.com). A subsequent human revision was done primarily in terms of content, so that the book will read stylistically differently from a conventional translation. Springer Nature works continuously to further the development of tools for the production of books and on the related technologies to support the authors.




Andreev Reflection in Superconducting Junctions


Book Description

This book offers a primer on the fundamental theory of Andreev reflection, a fundamental process in the motion of a Cooper pair, which dominates low-energy electronic transport properties in superconductor junctions including differential conductance and Josephson current. The book concisely describes how Andreev reflection impacts the low-energy physics of electronic transport especially in topologically non-trivial superconductor junctions. In addition, it includes an introduction to topological superconductors, covering topological classification, chiral and helical superconductors, and topological edges. The book is based on the author’s lecture notes, used in his intensive lectures and while supervising his upper undergraduate and early graduate students. To fully benefit from this concise primer, readers only need an undergraduate background in quantum mechanics and statistical mechanics. Further, by highlighting Josephson junctions of topological superconductors, the book offers readers a glimpse into cutting-edge topics.




Superconductors at the Nanoscale


Book Description

By covering theory, design, and fabrication of nanostructured superconducting materials, this monograph is an invaluable resource for research and development. Examples are energy saving solutions, healthcare, and communication technologies. Key ingredients are nanopatterned materials which help to improve the superconducting critical parameters and performance of superconducting devices, and lead to novel functionalities. Contents Tutorial on nanostructured superconductors Imaging vortices in superconductors: from the atomic scale to macroscopic distances Probing vortex dynamics on a single vortex level by scanning ac-susceptibility microscopy STM studies of vortex cores in strongly confined nanoscale superconductors Type-1.5 superconductivity Direct visualization of vortex patterns in superconductors with competing vortex-vortex interactions Vortex dynamics in nanofabricated chemical solution deposition high-temperature superconducting films Artificial pinning sites and their applications Vortices at microwave frequencies Physics and operation of superconducting single-photon devices Josephson and charging effect in mesoscopic superconducting devices NanoSQUIDs: Basics & recent advances Bi2Sr2CaCu2O8 intrinsic Josephson junction stacks as emitters of terahertz radiation| Interference phenomena in superconductor-ferromagnet hybrids Spin-orbit interactions, spin currents, and magnetization dynamics in superconductor/ferromagnet hybrids Superconductor/ferromagnet hybrids




Modern Aspects Of Superconductivity: Theory Of Superconductivity (Second Edition)


Book Description

This book is devoted to superconductivity, which is one of the most interesting problems in physics. In accordance with the outline of the book, it treats the key problems in the field of superconductivity, in particular, it discusses the mechanism(s) of superconductivity. This book is useful for researchers and graduate students in the fields of solid state physics, quantum field theory, and many-body theory.




Recent Books