Foundation Engineering in the Face of Uncertainty


Book Description

WIDTH: 405pt; BORDER-COLLAPSE: collapse border=0 cellSpacing=0 cellPadding=0 width=540> WIDTH: 405pt; mso-width-source: userset; mso-width-alt: 19748 width=540> HEIGHT: 31.5pt height=42> BORDER-BOTTOM: #f0f0f0; BORDER-LEFT: #f0f0f0; BACKGROUND-COLOR: transparent; WIDTH: 405pt; HEIGHT: 31.5pt; BORDER-TOP: #f0f0f0; BORDER-RIGHT: #f0f0f0 class=xl65 height=42 width=540>GSP 229 contains 54 papers on risk and uncertainty in foundation engineering presented in honor of Fred H. Kulhawy.




Challenges in Foundation Engineering


Book Description

Explore the interesting field of foundation engineering with our new book, Challenges in Foundation Engineering - Case Studies and Best Practices. These carefully gathered chapters travel through the modern challenges and innovative solutions in the industry. It covers a broad range of important and noteworthy topics, including assessing drill shaft foundation integrity, the complexities of soil-structure interaction, and the application of geosynthetic reinforcement. The book features insightful case studies and practical advice, shedding light on current trends and offering valuable perspectives for optimizing foundation systems, improving resilience, and promoting sustainability. Whether you’re an experienced engineer wanting to stay updated with the latest advancements or a student learning the fundamentals of geotechnical engineering, you’ll find a wealth of knowledge here to inspire innovation and progress. Challenges in Foundation Engineering takes an integrated approach, highlighting real-world applications. It’s set to become a crucial resource for anyone involved in designing, constructing, or managing foundation systems. Join us in discovering the potential of foundation engineering to shape the future of sustainable infrastructure.




Foundation Engineering: Geotechnical Principles and Practical Applications


Book Description

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. Master the art and science of foundation engineering This civil engineering textbook shows how geotechnical theory connects with the design and construction of today’s foundations. Foundation Engineering: Geotechnical Principles and Practical Applications shows how to perform critical calculations, apply the newest ground modification technologies, engineer and build effective foundations, and monitor performance and safety. Written by a recognized expert in the field, the book covers both shallow and deep foundations. Real-world case studies and practice problems help reinforce key information. Coverage includes: • Soil classification, clay, and minerals • Moisture content and unit weight • Shear strength • Consolidation • Terzagi’s eureka moment • Shallow foundations, stress distribution, and settlement • Flow nets, seepage, and dewatering • Slope stability • Deep foundations • Ground modification • Retaining walls and wall friction • Empirical tests • Field monitoring • Ethics and legal issues




Foundation Engineering Analysis and Design


Book Description

One of the core roles of a practising geotechnical engineer is to analyse and design foundations. This textbook for advanced undergraduates and graduate students covers the analysis, design and construction of shallow and deep foundations and retaining structures as well as the stability analysis and mitigation of slopes. It progressively introduces critical state soil mechanics and plasticity theories such as plastic limit analysis and cavity expansion theories before leading into the theories of foundation, lateral earth pressure and slope stability analysis. On the engineering side, the book introduces construction and testing methods used in current practice. Throughout it emphasizes the connection between theory and practice. It prepares readers for the more sophisticated non-linear elastic-plastic analysis in foundation engineering which is commonly used in engineering practice, and serves too as a reference book for practising engineers. A companion website provides a series of Excel spreadsheet programs to cover all examples included in the book, and PowerPoint lecture slides and a solutions manual for lecturers. Using Excel, the relationships between the input parameters and the design and analysis results can be seen. Numerical values of complex equations can be calculated quickly. non-linearity and optimization can be brought in more easily to employ functioned numerical methods. And sophisticated methods can be seen in practice, such as p-y curve for laterally loaded piles and flexible retaining structures, and methods of slices for slope stability analysis.




Current Practices and Future Trends in Deep Foundations


Book Description

GSP 125 contains 26 papers on state-of-the-art developments in deep foundation collected in honor of George G. Goble, Ph.D., P.E.




Soil Mechanics and Foundation Engineering: Fundamentals and Applications


Book Description

Learn the basics of soil mechanics and foundation engineering This hands-on guide shows, step by step, how soil mechanics principles can be applied to solve geotechnical and foundation engineering problems. Presented in a straightforward, engaging style by an experienced PE, Soil Mechanics and Foundation Engineering: Fundamentals and Applications starts with the basics, assuming no prior knowledge, and gradually proceeds to more advanced topics. You will get rich illustrations, worked-out examples, and real-world case studies that help you absorb the critical points in a short time. Coverage includes: Phase relations Soil classification Compaction Effective stresses Permeability and seepage Vertical stresses under loaded areas Consolidation Shear strength Lateral earth pressures Site investigation Shallow and deep foundations Earth retaining structures Slope stability Reliability-based design




Piezocone and Cone Penetration Test (CPTu and CPT) Applications in Foundation Engineering


Book Description

Piezocone and cone penetration tests (CPTu and CPT) applications in foundation engineering includes different approaches for determining the bearing capacity of shallow foundations, along with methods for determining pile bearing capacity and settlement concepts. The use of soft computing (GMDH) neural networks related to CPT records and Geotechnical parameters are also discussed. In addition, different cases regarding the behavior of foundation performance using case records, such as shallow foundation, deep soil improvement, soil behavior classification (SBC), and bearing capacity are also included. - Provides the latest on CPT and CPTu performance in geotechnical engineering, i.e., bearing capacity, settlement, liquefaction, soil classification and shear strength prediction - Introduces soft computing methods for processing soil properties and pile bearing capacity via CPT and CPTu - Explains CPT and CPTu testing methods which allows for the continuous, or virtually continuous, record of ground conditions




Shaking the Foundations of Geo-engineering Education


Book Description

This book comprises the proceedings of the international conference Shaking the Foundations of Geo-engineering Education (NUI Galway, Ireland, 4-6 July 2012), a major initiative of the International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE) Technical Committee (TC306) on Geo-engineering Education. SFGE 2012 has been carefully




Deepwater Foundations and Pipeline Geomechanics


Book Description

Practicing engineers in the offshore and reservoir engineering industry will find this timely volume filled with practical advice and expert information on current oil field development from oil exploration to production.




Foundation Engineering Handbook


Book Description

More than ten years have passed since the first edition was published. During that period there have been a substantial number of changes in geotechnical engineering, especially in the applications of foundation engineering. As the world population increases, more land is needed and many soil deposits previously deemed unsuitable for residential housing or other construction projects are now being used. Such areas include problematic soil regions, mining subsidence areas, and sanitary landfills. To overcome the problems associated with these natural or man-made soil deposits, new and improved methods of analysis, design, and implementation are needed in foundation construction. As society develops and living standards rise, tall buildings, transportation facilities, and industrial complexes are increasingly being built. Because of the heavy design loads and the complicated environments, the traditional design concepts, construction materials, methods, and equipment also need improvement. Further, recent energy and material shortages have caused additional burdens on the engineering profession and brought about the need to seek alternative or cost-saving methods for foundation design and construction.