Key to Geometry, Book 2: Circles


Book Description

Key to Geometry introduces students to a wide range of geometric discoveries as they do step-by-step constructions. Using only a pencil, compass, and straightedge, students begin by drawing lines, bisecting angles, and reproducing segments. Later they do sophisticated constructions involving over a dozen steps. When they finish, students will have been introduced to 134 geometric terms and will be ready to tackle formal proofs. Includes: Book 2 of Key to Geometry




Geometry: The Line and the Circle


Book Description

Geometry: The Line and the Circle is an undergraduate text with a strong narrative that is written at the appropriate level of rigor for an upper-level survey or axiomatic course in geometry. Starting with Euclid's Elements, the book connects topics in Euclidean and non-Euclidean geometry in an intentional and meaningful way, with historical context. The line and the circle are the principal characters driving the narrative. In every geometry considered—which include spherical, hyperbolic, and taxicab, as well as finite affine and projective geometries—these two objects are analyzed and highlighted. Along the way, the reader contemplates fundamental questions such as: What is a straight line? What does parallel mean? What is distance? What is area? There is a strong focus on axiomatic structures throughout the text. While Euclid is a constant inspiration and the Elements is repeatedly revisited with substantial coverage of Books I, II, III, IV, and VI, non-Euclidean geometries are introduced very early to give the reader perspective on questions of axiomatics. Rounding out the thorough coverage of axiomatics are concluding chapters on transformations and constructibility. The book is compulsively readable with great attention paid to the historical narrative and hundreds of attractive problems.




Key to Geometry


Book Description




Key to Geometry, Book 6: Angles


Book Description

Key to Geometry introduces students to a wide range of geometric discoveries as they do step-by-step constructions. Using only a pencil, compass, and straightedge, students begin by drawing lines, bisecting angles, and reproducing segments. Later they do sophisticated constructions involving over a dozen steps. When they finish, students will have been introduced to 134 geometric terms and will be ready to tackle formal proofs. Includes: Book 6 of Key to Geometry




Prealgebra 2e


Book Description

The images in this book are in color. For a less-expensive grayscale paperback version, see ISBN 9781680923254. Prealgebra 2e is designed to meet scope and sequence requirements for a one-semester prealgebra course. The text introduces the fundamental concepts of algebra while addressing the needs of students with diverse backgrounds and learning styles. Each topic builds upon previously developed material to demonstrate the cohesiveness and structure of mathematics. Students who are taking basic mathematics and prealgebra classes in college present a unique set of challenges. Many students in these classes have been unsuccessful in their prior math classes. They may think they know some math, but their core knowledge is full of holes. Furthermore, these students need to learn much more than the course content. They need to learn study skills, time management, and how to deal with math anxiety. Some students lack basic reading and arithmetic skills. The organization of Prealgebra makes it easy to adapt the book to suit a variety of course syllabi.




Geometry of Complex Numbers


Book Description

Illuminating, widely praised book on analytic geometry of circles, the Moebius transformation, and 2-dimensional non-Euclidean geometries.




Plane Geometry Practice Workbook with Answers


Book Description

Learn and practice essential geometry skills. The answer to every problem, along with helpful notes, can be found at the back of the book. This volume focuses on fundamental concepts relating to circles, including chords, secants, tangents, and inscribed/circumscribed polygons. Topics include: radius, diameter, circumference, and area; chords, secants, and tangents; sectors vs. segments; inscribed and circumscribed shapes; the arc length formula; degrees and radians; inscribed angles; Thales's theorem; and an introduction to 3D objects, including the cube, prism, pyramid, sphere, cylinder, and cone. The author, Chris McMullen, Ph.D., has over twenty years of experience teaching math skills to physics students. He prepared this workbook of the Improve Your Math Fluency series to share his strategies for solving geometry problems and formulating proofs.




Euclidean Geometry


Book Description

Geometry has been an essential element in the study of mathematics since antiquity. Traditionally, we have also learned formal reasoning by studying Euclidean geometry. In this book, David Clark develops a modern axiomatic approach to this ancient subject, both in content and presentation. Mathematically, Clark has chosen a new set of axioms that draw on a modern understanding of set theory and logic, the real number continuum and measure theory, none of which were available in Euclid's time. The result is a development of the standard content of Euclidean geometry with the mathematical precision of Hilbert's foundations of geometry. In particular, the book covers all the topics listed in the Common Core State Standards for high school synthetic geometry. The presentation uses a guided inquiry, active learning pedagogy. Students benefit from the axiomatic development because they themselves solve the problems and prove the theorems with the instructor serving as a guide and mentor. Students are thereby empowered with the knowledge that they can solve problems on their own without reference to authority. This book, written for an undergraduate axiomatic geometry course, is particularly well suited for future secondary school teachers. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.







A Decade of the Berkeley Math Circle


Book Description

Many mathematicians have been drawn to mathematics through their experience with math circles: extracurricular programs exposing teenage students to advanced mathematical topics and a myriad of problem solving techniques and inspiring in them a lifelong love for mathematics. Founded in 1998, the Berkeley Math Circle (BMC) is a pioneering model of a U.S. math circle, aspiring to prepare our best young minds for their future roles as mathematics leaders. Over the last decade, 50 instructors--from university professors to high school teachers to business tycoons--have shared their passion for mathematics by delivering more than 320 BMC sessions full of mathematical challenges and wonders. Based on a dozen of these sessions, this book encompasses a wide variety of enticing mathematical topics: from inversion in the plane to circle geometry; from combinatorics to Rubik's cube and abstract algebra; from number theory to mass point theory; from complex numbers to game theory via invariants and monovariants. The treatments of these subjects encompass every significant method of proof and emphasize ways of thinking and reasoning via 100 problem solving techniques. Also featured are 300 problems, ranging from beginner to intermediate level, with occasional peaks of advanced problems and even some open questions. The book presents possible paths to studying mathematics and inevitably falling in love with it, via teaching two important skills: thinking creatively while still ``obeying the rules,'' and making connections between problems, ideas, and theories. The book encourages you to apply the newly acquired knowledge to problems and guides you along the way, but rarely gives you ready answers. ``Learning from our own mistakes'' often occurs through discussions of non-proofs and common problem solving pitfalls. The reader has to commit to mastering the new theories and techniques by ``getting your hands dirty'' with the problems, going back and reviewing necessary problem solving techniques and theory, and persistently moving forward in the book. The mathematical world is huge: you'll never know everything, but you'll learn where to find things, how to connect and use them. The rewards will be substantial. In the interest of fostering a greater awareness and appreciation of mathematics and its connections to other disciplines and everyday life, MSRI and the AMS are publishing books in the Mathematical Circles Library series as a service to young people, their parents and teachers, and the mathematics profession.