Kinematics, Dynamics, and Design of Machinery


Book Description

Kinematics, Dynamics, and Design of Machinery, Third Edition, presents a fresh approach to kinematic design and analysis and is an ideal textbook for senior undergraduates and graduates in mechanical, automotive and production engineering Presents the traditional approach to the design and analysis of kinematic problems and shows how GCP can be used to solve the same problems more simply Provides a new and simpler approach to cam design Includes an increased number of exercise problems Accompanied by a website hosting a solutions manual, teaching slides and MATLAB® programs




Kinematics, Dynamics And Design Of Machinery, 2Nd Ed (With Cd)


Book Description

Kinematics, Dynamics, and Design of Machinery introduces spatial mechanisms using both vectors and matrices, which introduces the topic from two vantage points. It is an excellent refresher on the kinematics and dynamics of machinery. The book provides a solid theoretical background in kinematics principles coupled with practical examples, and presents analytical techniques without complex mathematics in the design of mechanical devices.· Graphical Position, Velocity and Acceleration Analysis for Mechanisms with Revolute Joints or Fixed Slides · Linkages with Rolling and Sliding Contacts and Joints On Moving Sliders · Instant Centers of Velocity · Analytical Linkage Analysis · Planar Linkage Design · Special Mechanisms · Profile Cam Design · Spatial Linkage Analysis · Spur Gears · Helical, Bevel, and Worm Gears · Gear Trains · Static Force Analysis of Mechanisms · Dynamic Force Analysis · Shaking Forces and Balancing




Design of Machinery


Book Description

CD-ROM contains: Seven author-written programs. -- Examples and figures. -- Problem solutions. -- TKSolver Files. -- Working Model Files.




Kinematics and Dynamics of Machinery


Book Description

This book covers the kinematics and dynamics of machinery topics. It emphasizes the synthesis and design aspects and the use of computer-aided engineering. A sincere attempt has been made to convey the art of the design process to students in order to prepare them to cope with real engineering problems in practice. This book provides up-to-date methods and techniques for analysis and synthesis that take full advantage of the graphics microcomputer by emphasizing design as well as analysis. In addition, it details a more complete, modern, and thorough treatment of cam design than existing texts in print on the subject. The author’s website at www.designofmachinery.com has updates, the author’s computer programs and the author’s PowerPoint lectures exclusively for professors who adopt the book. Features Student-friendly computer programs written for the design and analysis of mechanisms and machines. Downloadable computer programs from website Unstructured, realistic design problems and solutions




Kinematics, Dynamics, and Design of Machinery


Book Description

Kinematics, Dynamics, and Design of Machinery, Third Edition, presents a fresh approach to kinematic design and analysis and is an ideal textbook for senior undergraduates and graduates in mechanical, automotive and production engineering Presents the traditional approach to the design and analysis of kinematic problems and shows how GCP can be used to solve the same problems more simply Provides a new and simpler approach to cam design Includes an increased number of exercise problems Accompanied by a website hosting a solutions manual, teaching slides and MATLAB® programs




Introduction to Kinematics and Dynamics of Machinery


Book Description

Introduction to Kinematics and Dynamics of Machinery is presented in lecture notes format and is suitable for a single-semester three credit hour course taken by juniors in an undergraduate degree program majoring in mechanical engineering. It is based on the lecture notes for a required course with a similar title given to junior (and occasionally senior) undergraduate students by the author in the Department of Mechanical Engineering at the University of Calgary from 1981 and since 1996 at the University of Nebraska, Lincoln. The emphasis is on fundamental concepts, theory, analysis, and design of mechanisms with applications. While it is aimed at junior undergraduates majoring in mechanical engineering, it is suitable for junior undergraduates in biological system engineering, aerospace engineering, construction management, and architectural engineering.







Fundamentals of Kinematics and Dynamics of Machines and Mechanisms


Book Description

The study of the kinematics and dynamics of machines lies at the very core of a mechanical engineering background. Although tremendous advances have been made in the computational and design tools now available, little has changed in the way the subject is presented, both in the classroom and in professional references. Fundamentals of Kinematics and Dynamics of Machines and Mechanisms brings the subject alive and current. The author's careful integration of Mathematica software gives readers a chance to perform symbolic analysis, to plot the results, and most importantly, to animate the motion. They get to "play" with the mechanism parameters and immediately see their effects. The downloadable resources contain Mathematica-based programs for suggested design projects. As useful as Mathematica is, however, a tool should not interfere with but enhance one's grasp of the concepts and the development of analytical skills. The author ensures this with his emphasis on the understanding and application of basic theoretical principles, unified approach to the analysis of planar mechanisms, and introduction to vibrations and rotordynamics.




Theory of Machines


Book Description

The Theory of Machines is an important subject to mechanical engineering students of both bachelor s and diploma level. One has to understand the basics of kinematics and dynamics of machines before designing and manufacturing any component. The subject m




Kinematics and Dynamics of Machines


Book Description

Kinematic and dynamic analysis are crucial to the design of mechanism and machines. In this student-friendly text, Martin presents the fundamental principles of these important disciplines in as simple a manner as possible, favoring basic theory over special constructions. Among the areas covered are the equivalent four-bar linkage; rotating vector treatment for analyzing multi-cylinder engines; and critical speeds, including torsional vibration of shafts. The book also describes methods used to manufacture disk cams, and it discusses mathematical methods for calculating the cam profile, the pressure angle, and the locations of the cam. This book is an excellent choice for courses in kinematics of machines, dynamics of machines, and machine design and vibrations.