Knowledge-based Neurocomputing


Book Description

Looking at ways to encode prior knowledge and to extract, refine, and revise knowledge within a neurocomputing system.Neurocomputing methods are loosely based on a model of the brain as a network of simple interconnected processing elements corresponding to neurons. These methods derive their power from the collective processing of artificial neurons, the chief advantage being that such systems can learn and adapt to a changing environment. In knowledge-based neurocomputing, the emphasis is on the use and representation of knowledge about an application. Explicit modeling of the knowledge represented by such a system remains a major research topic. The reason is that humans find it difficult to interpret the numeric representation of a neural network.The key assumption of knowledge-based neurocomputing is that knowledge is obtainable from, or can be represented by, a neurocomputing system in a form that humans can understand. That is, the knowledge embedded in the neurocomputing system can also be represented in a symbolic or well-structured form, such as Boolean functions, automata, rules, or other familiar ways. The focus of knowledge-based computing is on methods to encode prior knowledge and to extract, refine, and revise knowledge within a neurocomputing system.ContributorsC. Aldrich, J. Cervenka, I. Cloete, R.A. Cozzio, R. Drossu, J. Fletcher, C.L. Giles, F.S. Gouws, M. Hilario, M. Ishikawa, A. Lozowski, Z. Obradovic, C.W. Omlin, M. Riedmiller, P. Romero, G.P.J. Schmitz, J. Sima, A. Sperduti, M. Spott, J. Weisbrod, J.M. Zurada




Knowledge-Based Neurocomputing: A Fuzzy Logic Approach


Book Description

This book details the state-of-the-art in knowledge-based neurocomputing. It introduces a novel fuzzy-rule base known as Fuzzy All-permutations Rule-Base (FARB) and presents new connections between artificial neural networks and FARB.




Intelligent Knowledge-Based Systems


Book Description

This five-volume set clearly manifests the great significance of these key technologies for the new economies of the new millennium. The discussions provide a wealth of practical ideas intended to foster innovation in thought and, consequently, in the further development of technology. Together, they comprise a significant and uniquely comprehensive reference source for research workers, practitioners, computer scientists, academics, students, and others on the international scene for years to come.




Knowledge-Based Systems


Book Description

Knowledge Based Systems (KBS) are systems that use artificial intelligence techniques in the problem solving process. This text is designed to develop an appreciation of KBS and their architecture and to help users understand a broad variety of knowledge based techniques for decision support and planning. It assumes basic computer science skills and a math background that includes set theory, relations, elementary probability, and introductory concepts of artificial intelligence. Each of the 12 chapters are designed to be modular providing instructors with the flexibility to model the book to their own course needs. Exercises are incorporated throughout the text to highlight certain aspects of the material being presented and to stimulate thought and discussion.




Bio-Inspired Systems: Computational and Ambient Intelligence


Book Description

This volume presents the set of final accepted papers for the tenth edition of the IWANN conference “International Work-Conference on Artificial neural Networks” held in Salamanca (Spain) during June 10–12, 2009. IWANN is a biennial conference focusing on the foundations, theory, models and applications of systems inspired by nature (mainly, neural networks, evolutionary and soft-computing systems). Since the first edition in Granada (LNCS 540, 1991), the conference has evolved and matured. The list of topics in the successive Call for - pers has also evolved, resulting in the following list for the present edition: 1. Mathematical and theoretical methods in computational intelligence. C- plex and social systems. Evolutionary and genetic algorithms. Fuzzy logic. Mathematics for neural networks. RBF structures. Self-organizing networks and methods. Support vector machines. 2. Neurocomputational formulations. Single-neuron modelling. Perceptual m- elling. System-level neural modelling. Spiking neurons. Models of biological learning. 3. Learning and adaptation. Adaptive systems. Imitation learning. Reconfig- able systems. Supervised, non-supervised, reinforcement and statistical al- rithms. 4. Emulation of cognitive functions. Decision making. Multi-agent systems. S- sor mesh. Natural language. Pattern recognition. Perceptual and motor functions (visual, auditory, tactile, virtual reality, etc.). Robotics. Planning motor control. 5. Bio-inspired systems and neuro-engineering. Embedded intelligent systems. Evolvable computing. Evolving hardware. Microelectronics for neural, fuzzy and bio-inspired systems. Neural prostheses. Retinomorphic systems. Bra- computer interfaces (BCI). Nanosystems. Nanocognitive systems.




Combinations of Intelligent Methods and Applications


Book Description

The combination of different intelligent methods is a very active research area in Artificial Intelligence (AI). The aim is to create integrated or hybrid methods that benefit from each of their components. Some of the existing efforts combine soft computing methods either among themselves or with more traditional AI methods such as logic and rules. Another stream of efforts integrates machine learning with soft-computing or traditional AI methods. Yet another integrates agent-based approaches with logic and also non-symbolic approaches. Some of the combinations have been quite important and more extensively used, like neuro-symbolic methods, neuro-fuzzy methods and methods combining rule-based and case-based reasoning. However, there are other combinations that are still under investigation, such as those related to the Semantic Web. The 2nd Workshop on “Combinations of Intelligent Methods and Applications” (CIMA 2010) was intended to become a forum for exchanging experience and ideas among researchers and practitioners who are dealing with combining intelligent methods either based on first principles or in the context of specific applications. CIMA 2010 was held in conjunction with the 22nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2010). Also, a special track was organized in ICTAI 2010, under the same title. This volume includes revised versions of the papers presented in CIMA 2010 and one of the short papers presented in the corresponding ICTAI 2010 special track. It also includes a paper of the editors as invited.




Computational Science - ICCS 2002


Book Description

Computational Science is the scienti?c discipline that aims at the development and understanding of new computational methods and techniques to model and simulate complex systems. The area of application includes natural systems – such as biology, envir- mental and geo-sciences, physics, and chemistry – and synthetic systems such as electronics and ?nancial and economic systems. The discipline is a bridge b- ween ‘classical’ computer science – logic, complexity, architecture, algorithms – mathematics, and the use of computers in the aforementioned areas. The relevance for society stems from the numerous challenges that exist in the various science and engineering disciplines, which can be tackled by advances made in this ?eld. For instance new models and methods to study environmental issues like the quality of air, water, and soil, and weather and climate predictions through simulations, as well as the simulation-supported development of cars, airplanes, and medical and transport systems etc. Paraphrasing R. Kenway (R.D. Kenway, Contemporary Physics. 1994): ‘There is an important message to scientists, politicians, and industrialists: in the future science, the best industrial design and manufacture, the greatest medical progress, and the most accurate environmental monitoring and forecasting will be done by countries that most rapidly exploit the full potential ofcomputational science’. Nowadays we have access to high-end computer architectures and a large range of computing environments, mainly as a consequence of the enormous s- mulus from the various international programs on advanced computing, e.g.




Advances in Neural Information Processing Systems 16


Book Description

Papers presented at the 2003 Neural Information Processing Conference by leading physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The annual Neural Information Processing (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees -- physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only thirty percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains all the papers presented at the 2003 conference.




The Handbook of Brain Theory and Neural Networks


Book Description

This second edition presents the enormous progress made in recent years in the many subfields related to the two great questions : how does the brain work? and, How can we build intelligent machines? This second edition greatly increases the coverage of models of fundamental neurobiology, cognitive neuroscience, and neural network approaches to language. (Midwest).




Neural Information Processing


Book Description

It is our great pleasure to welcome you to the 11th International Conference on Neural Information Processing (ICONIP 2004) to be held in Calcutta. ICONIP 2004 is organized jointly by the Indian Statistical Institute (ISI) and Jadavpur University (JU). We are con?dent that ICONIP 2004, like the previous conf- ences in this series,will providea forum for fruitful interactionandthe exchange of ideas between the participants coming from all parts of the globe. ICONIP 2004 covers all major facets of computational intelligence, but, of course, with a primary emphasis on neural networks. We are sure that this meeting will be enjoyable academically and otherwise. We are thankful to the track chairs and the reviewers for extending their support in various forms to make a sound technical program. Except for a few cases, where we could get only two review reports, each submitted paper was reviewed by at least three referees, and in some cases the revised versions were againcheckedbythereferees. Wehad470submissionsanditwasnotaneasytask for us to select papers for a four-day conference. Because of the limited duration of the conference, based on the review reports we selected only about 40% of the contributed papers. Consequently, it is possible that some good papers are left out. We again express our sincere thanks to all referees for accomplishing a great job. In addition to 186 contributed papers, the proceedings includes two plenary presentations, four invited talks and 18 papers in four special sessions. The proceedings is organized into 26 coherent topical groups.