Privacy Preserving Data Mining


Book Description

Privacy preserving data mining implies the "mining" of knowledge from distributed data without violating the privacy of the individual/corporations involved in contributing the data. This volume provides a comprehensive overview of available approaches, techniques and open problems in privacy preserving data mining. Crystallizing much of the underlying foundation, the book aims to inspire further research in this new and growing area. Privacy Preserving Data Mining is intended to be accessible to industry practitioners and policy makers, to help inform future decision making and legislation, and to serve as a useful technical reference.




Knowledge Discovery in Databases: PKDD 2006


Book Description

This book constitutes the refereed proceedings of the 10th European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD 2006. The book presents 36 revised full papers and 26 revised short papers together with abstracts of 5 invited talks, carefully reviewed and selected from 564 papers submitted. The papers offer a wealth of new results in knowledge discovery in databases and address all current issues in the area.




Advances in Knowledge Discovery and Data Mining


Book Description

This book constitutes the refereed proceedings of the 11th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2007, held in Nanjing, China, May 2007. It covers new ideas, original research results and practical development experiences from all KDD-related areas including data mining, machine learning, data warehousing, data visualization, automatic scientific discovery, knowledge acquisition and knowledge-based systems.




Knowledge Discovery from Sensor Data


Book Description

As sensors become ubiquitous, a set of broad requirements is beginning to emerge across high-priority applications including disaster preparedness and management, adaptability to climate change, national or homeland security, and the management of critical infrastructures. This book presents innovative solutions in offline data mining and real-time




Knowledge Discovery in Inductive Databases


Book Description

This book constitutes the thoroughly refereed joint postproceedings of the 5th International Workshop on Knowledge Discovery in Inductive Databases, KDID 2006, held in association with ECML/PKDD. Bringing together the fields of databases, machine learning, and data mining, the papers address various current topics in knowledge discovery and data mining in the framework of inductive databases such as constraint-based mining, database technology and inductive querying.




Machine Learning and Knowledge Discovery in Databases


Book Description

This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2008, held in Antwerp, Belgium, in September 2008. The 100 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 521 submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.







Metalearning


Book Description

Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience. This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence.




Machine Learning and Knowledge Discovery in Databases


Book Description

This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2008, held in Antwerp, Belgium, in September 2008. The 100 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 521 submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.




Knowledge Engineering: Practice and Patterns


Book Description

Knowledge Management and Knowledge Engineering is a fascinating ?eld of re- 1 search these days. In the beginning of EKAW , the modeling and acquisition of knowledge was the privilege of – or rather a burden for – a few knowledge engineers familiar with knowledge engineering paradigms and knowledge rep- sentationformalisms.While the aimhasalwaysbeentomodelknowledgedecl- atively and allow for reusability, the knowledge models produced in these early days were typically used in single and very speci?c applications and rarely - changed. Moreover, these models were typically rather complex, and they could be understood only by a few expert knowledge engineers. This situation has changed radically in the last few years as clearly indicated by the following trends: – The creation of (even formal) knowledge is now becoming more and more collaborative. Collaborative ontology engineering tools and social software platforms show the potential to leverage the wisdom of the crowds (or at least of “the many”) to lead to broader consensus and thus produce shared models which qualify better for reuse. – A trend can also be observed towards developing and publishing small but 2 3 4 high-impactvocabularies(e.g.,FOAF ,DublinCore ,GoodRelations)rather than complex and large knowledge models.