An Introduction to Knowledge Engineering


Book Description

An Introduction to Knowledge Engineering presents a simple but detailed exp- ration of current and established work in the ?eld of knowledge-based systems and related technologies. Its treatment of the increasing variety of such systems is designed to provide the reader with a substantial grounding in such techno- gies as expert systems, neural networks, genetic algorithms, case-based reasoning systems, data mining, intelligent agents and the associated techniques and meth- ologies. The material is reinforced by the inclusion of numerous activities that provide opportunities for the reader to engage in their own research and re?ection as they progress through the book. In addition, self-assessment questions allow the student to check their own understanding of the concepts covered. The book will be suitable for both undergraduate and postgraduate students in computing science and related disciplines such as knowledge engineering, arti?cial intelligence, intelligent systems, cognitive neuroscience, robotics and cybernetics. vii Contents Foreword vii 1 An Introduction to Knowledge Engineering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Section 1: Data, Information and Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Section 2: Skills of a Knowledge Engineer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Section 3: An Introduction to Knowledge-Based Systems. . . . . . . . . . . . . . . . . 18 2 Types of Knowledge-Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Section 1: Expert Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Section 2: Neural Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Section 3: Case-Based Reasoning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Section 4: Genetic Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Section 5: Intelligent Agents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Section 6: Data Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3 Knowledge Acquisition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4 Knowledge Representation and Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Section 1: Using Knowledge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Section 2: Logic, Rules and Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Section 3: Developing Rule-Based Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 Section 4: Semantic Networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .







Artificial Intelligence and Expert Systems for Engineers


Book Description

This book provides a comprehensive presentation of artificial intelligence (AI) methodologies and tools valuable for solving a wide spectrum of engineering problems. What's more, it offers these AI tools on an accompanying disk with easy-to-use software. Artificial Intelligence and Expert Systems for Engineers details the AI-based methodologies known as: Knowledge-Based Expert Systems (KBES); Design Synthesis; Design Critiquing; and Case-Based Reasoning. KBES are the most popular AI-based tools and have been successfully applied to planning, diagnosis, classification, monitoring, and design problems. Case studies are provided with problems in engineering design for better understanding of the problem-solving models using the four methodologies in an integrated software environment. Throughout the book, examples are given so that students and engineers can acquire skills in the use of AI-based methodologies for application to practical problems ranging from diagnosis to planning, design, and construction and manufacturing in various disciplines of engineering. Artificial Intelligence and Expert Systems for Engineers is a must-have reference for students, teachers, research scholars, and professionals working in the area of civil engineering design in particular and engineering design in general.




Artificial Intelligence and Expert Systems


Book Description

This book is designed to identify some of the current applications and techniques of artificial intelligence as an aid to solving problems and accomplishing tasks. It provides a general introduction to the various branches of AI which include formal logic, reasoning, knowledge engineering, expert systems, neural networks, and fuzzy logic, etc. The book has been structured into five parts with an emphasis on expert systems: problems and state space search, knowledge engineering, neural networks, fuzzy logic, and Prolog. Features: Introduces the various branches of AI which include formal logic, reasoning, knowledge engineering, expert systems, neural networks, and fuzzy logic, etc. Includes a separate chapter on Prolog to introduce basic programming techniques in AI




Knowledge Engineering


Book Description

Using robust software, this book focuses on learning assistants for evidence-based reasoning that learn complex problem solving from humans.




Knowledge Engineering for Modern Information Systems


Book Description

Knowledge Engineering (KE) is a field within artificial intelligence that develops knowledgebased systems. KE is the process of imitating how a human expert in a specific domain would act and take decisions. It contains large amounts of knowledge, like metadata and information about a data object that describes characteristics such as content, quality, and format, structure and processes. Such systems are computer programs that are the basis of how a decision is made or a conclusion is reached. It is having all the rules and reasoning mechanisms to provide solutions to real-world problems. This book presents an extensive collection of the recent findings and innovative research in the information system and KE domain. Highlighting the challenges and difficulties in implementing these approaches, this book is a critical reference source for academicians, professionals, engineers, technology designers, analysts, undergraduate and postgraduate students in computing science and related disciplines such as Information systems, Knowledge Engineering, Intelligent Systems, Artifi cial Intelligence, Cognitive Neuro - science, and Robotics. In addition, anyone who is interested or involved in sophisticated information systems and knowledge engineering developments will find this book a valuable source of ideas and guidance.




Knowledge-Based Configuration


Book Description

Knowledge-based Configuration incorporates knowledge representation formalisms to capture complex product models and reasoning methods to provide intelligent interactive behavior with the user. This book represents the first time that corporate and academic worlds collaborate integrating research and commercial benefits of knowledge-based configuration. Foundational interdisciplinary material is provided for composing models from increasingly complex products and services. Case studies, the latest research, and graphical knowledge representations that increase understanding of knowledge-based configuration provide a toolkit to continue to push the boundaries of what configurators can do and how they enable companies and customers to thrive. - Includes detailed discussion of state-of-the art configuration knowledge engineering approaches such as automated testing and debugging, redundancy detection, and conflict management - Provides an overview of the application of knowledge-based configuration technologies in the form of real-world case studies from SAP, Siemens, Kapsch, and more - Explores the commercial benefits of knowledge-based configuration technologies to business sectors from services to industrial equipment - Uses concepts that are based on an example personal computer configuration knowledge base that is represented in an UML-based graphical language




Expert Systems in Engineering Applications


Book Description

Expert system technology is receiving increasing popularity and acceptance in the engineering community. This is due to the fact that there actually exists a close match between the capabilities of the current generation expert systems and the requirements of engineering practice. Prepared by a distinguished team of experts, this book provides a balanced state-of-the-art presentation of the design principles of engineering expert systems, and a representative picture of their capabilities to assist efficiently the design, diagnosis and operation of complex industrial plants. Among the application areas covered are the following: hardware synthesis, industrial plant layout design, fault diagnosis, process control, image analysis, computer communication, electric power systems, intelligent control, robotics, and manufacturing systems. The book is appropriate for the researcher and the professional. The researcher can save considerable time in searching the scattered technical information on engineering expert systems. The professional can have readily available a rich set of guidelines and techniques that are applicable to a wide class of engineering domains.




Knowledge Engineering


Book Description

A monograph for specialists interested in building maintainable knowledge based systems, giving a unified methodology for the design of such systems




Knowledge Management


Book Description

Knowledge Management (KM) is strongly rooted in the discipline of Knowledge Engineering (KE), which in turn grew partly out of the artificial intelligence field. Despite their close relationship, however, many KM specialists have failed to fully recognize the synergy or acknowledge the power that KE methodologies, techniques, and tools hold for enh