Language Processing in Advanced Learners of English


Book Description

The production and processing of collocations and formulaic language is a field of growing interest in corpus linguistics and experimental psycholinguistics. In the past this fascinating field at the interface of grammar and the lexicon has been mainly studied based on English native speakers, while research focusing on second language speakers and language learners has been comparatively rare. This book proposes an integration of corpus-based and experimental methods by analysing language processing of collocation by advanced learners of English. In using corpus-derived collocational stimuli of native-like and learner-typical language use in an experimental setting, it shows how advanced German L1 learners of English process native-like collocations, L1-based interferences and non-collocating lexical combinations. This book is of interest to anyone interested in the psycholinguistic validity of collocation from a bilingual point of view, as it explores methods of tracking collocational processing of speakers working with different sets of ‘collocational preferences’.




Representation Learning for Natural Language Processing


Book Description

This open access book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions. The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.




Understanding Second Language Processing


Book Description

This book aims to help researchers and teachers interested in language processing and Processability Theory (PT) to understand this theory and its applications. PT is an influential account of second language processing which hypothesizes that, due to the architecture of language processing, learners acquire second languages in developmental stages. This book lays out PT’s predictions and research on the development of diverse target languages – particularly English and Scandinavian languages – by learners of various categories. It discusses the typological issues facing PT and its contribution to an understanding of variation and cognitive constraints on pedagogy. However, the book also raises a critical eye to the literature which, after almost twenty years of evolution, requires explanation, clarification and, in some cases, extension. Why do some phenomena belong to different stages in different languages? Why are important types of variation under-represented? Is teaching as constrained as proposed in PT?




Speech & Language Processing


Book Description




Natural Language Processing in Artificial Intelligence


Book Description

This volume focuses on natural language processing, artificial intelligence, and allied areas. Natural language processing enables communication between people and computers and automatic translation to facilitate easy interaction with others around the world. This book discusses theoretical work and advanced applications, approaches, and techniques for computational models of information and how it is presented by language (artificial, human, or natural) in other ways. It looks at intelligent natural language processing and related models of thought, mental states, reasoning, and other cognitive processes. It explores the difficult problems and challenges related to partiality, underspecification, and context-dependency, which are signature features of information in nature and natural languages. Key features: Addresses the functional frameworks and workflow that are trending in NLP and AI Looks at the latest technologies and the major challenges, issues, and advances in NLP and AI Explores an intelligent field monitoring and automated system through AI with NLP and its implications for the real world Discusses data acquisition and presents a real-time case study with illustrations related to data-intensive technologies in AI and NLP.




Foundations of Statistical Natural Language Processing


Book Description

Statistical approaches to processing natural language text have become dominant in recent years. This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.




Emerging Applications of Natural Language Processing: Concepts and New Research


Book Description

"This book provides pertinent and vital information that researchers, postgraduate, doctoral students, and practitioners are seeking for learning about the latest discoveries and advances in NLP methodologies and applications of NLP"--Provided by publisher.




Natural Language Processing


Book Description

This undergraduate textbook introduces essential machine learning concepts in NLP in a unified and gentle mathematical framework.




Introduction to Natural Language Processing


Book Description

A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation. The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.




Prediction in Second Language Processing and Learning


Book Description

There is ample evidence that language users, including second-language (L2) users, can predict upcoming information during listening and reading. Yet it is still unclear when, how, and why language users engage in prediction, and what the relation is between prediction and learning. This volume presents a collection of current research, insights, and directions regarding the role of prediction in L2 processing and learning. The contributions in this volume specifically address how different (L1-based) theoretical models of prediction apply to or may be expanded to account for L2 processing, report new insights on factors (linguistic, cognitive, social) that modulate L2 users’ engagement in prediction, and discuss the functions that prediction may or may not serve in L2 processing and learning. Taken together, this volume illustrates various fruitful approaches to investigating and accounting for differences in predictive processing within and across individuals, as well as across populations.