Lanthanide-Doped Aluminate Phosphors


Book Description

Lanthanide Doped Aluminate Phosphors: Synthesis, Properties, and Applications overviews advances in research on aluminate-based long persistent phosphors and their applications in lighting, display, radiation dosimetry and imaging. The book reviews the most important categories of rare earth aluminate-based phosphors, including aluminosilicates and aluminoborates. This category of material is attractive for a wide range of applications because of their high quantum efficiency, long afterglow life, chemical stability and optical properties, which is discussed throughout. Optical properties, in particular, are emphasized in the book along with the relationship of the chemical composition and doping of these materials and their optical performance. This book is suitable for researchers and practitioners working in academia and research and development in industry in the disciplines of materials science and engineering, chemistry and physics. - Introduces rare-earth doped aluminates synthesis and characterization strategies, properties and applications - Focuses on different types of aluminates, such as monoaluminates, binary aluminates and hexaaluminates, aluminoborates and aluminosilicate systems - Discusses optical properties of phosphors, including photoluminescent long persistence and thermo luminescence




Spectroscopy of Lanthanide Doped Oxide Materials


Book Description

Spectroscopy of Lanthanide Doped Oxide Materials provides a comprehensive overview on the most essential characterization techniques of these materials, along with their key applications. The book describes the application of optical spectroscopy of lanthanides doped inorganic phosphor hosts and gives information about their structure and morphology, binding energies, energy of transition and band gap. Also discussed are the properties and applications of rare earth doped inorganic materials and the barriers and potential solutions to enable the commercial realization of phosphors in important applications. The book reviews key information for those entering the field of phosphor research, along with the fundamental knowledge of the properties of transition series elements under UV/Visible/NIR light exposer. Low-cost materials methods to synthesize the materials and spectroscopic characterization methods are also detailed. - Reviews the barriers and potential solutions to enable commercial realization of inorganic phosphors - Discusses low-cost material methods to synthesize and characterize lanthanide doped oxide materials - Provides readers with a comprehensive overview on key properties for the most relevant applications, such as lighting and display, energy conversion and solar cell devices




Advanced Materials for Solid State Lighting


Book Description

This book highlights the synthesis, luminescence, and applications of rare earth-doped phosphors materials for solid-state lighting. Solid-state lighting is turning into a leading technology in the lighting industry, permitting improvement in the fields from architectural to domestic applications. Driven with the aid of using ongoing multi-field research, solid-state lighting needs an improvement of various technologies: efficient and reliable light-emitting devices, devices for new functionalities, and optical solutions for beam shaping. Noteworthy research endeavors were aimed to find out eco-friendly, better performance, cost, and energy-efficient phosphor materials for the application in solid-state lighting devices. Power phosphor materials with advanced optical and photoluminescence properties in a wide range of areas have shared the research efforts in this sector aimed in the direction of achieving better material features. Rare earth ion-doped phosphor materials have been the subject of scientific interest because of their significant applications in a variety of fields such as display devices, temperature sensors, solar cells, bio-imaging, and optoelectronics devices. This book covers the broad aspects of organic and inorganic materials based on phosphor materials and is beneficial to researchers involved in these areas. This book is specially designed to provide an introductory concept of luminescent materials, particularly man-made (artificial) phosphors in a language comprehensible to beginners and students. The book also includes some new materials with promising technologies and upgraded properties that expose new potential possibilities are also highlighted.




Upconversion Nanocrystals for Sustainable Technology


Book Description

Upconversion Nanocrystals for Sustainable Technology focuses on the current research directions in upconverting nanocrystals and their role in the development of sustainable technology. The book focuses on the development of low-cost, nontoxic, and energy-efficient upconverting nanocrystals for a wide range of applications. In particular, it reviews size control synthesis techniques of nanostructured materials in different dimensions, size-dependent properties, and the relationship between material properties and performance, The book discusses the use of upconversion materials for lasers, display, lighting, energy, and biomedical applications—with a focus on the use of these materials to develop more sustainable technologies. Upconversion Nanocrystals for Sustainable Technology is suitable for new entrants in academia and R&D with a scientific background in materials science and engineering, chemistry, and chemical engineering. - Introduces upconverting nanocrystals and their preparation and characterization strategies, properties, and applications - Reviews methods to develop low-cost and energy-efficient technologies based on upconverting nanocrystals - Discusses essential parameters including properties, materials performance, and their scope in the development of sustainable technology




Phosphor Handbook


Book Description

Phosphor Handbook: Process, Properties and Applications provides a comprehensive overview of the latest advances in research on the synthesis, characterization and applications of organic and inorganic phosphors. There is detailed information presented on the characterization of the relevant phosphor groups, such as up-conversion and down-conversion phosphors, inorganic LED phosphors, organic LED phosphors and thermoluminescence and dosimetric phosphors using various physical and chemical advances. Finally, the advances in phosphor technologies are discussed, including current barriers to their use in commercial applications and emerging opportunities. This book is suitable for researchers and practitioners in academia and those working in R&D in industry in the disciplines of materials science and engineering, materials chemistry, materials physics, photonics science and technology, nanotechnology and physical chemistry. - Introduces fundamentals of phosphor materials, including their mechanisms, properties and technologies - Reviews the most important categories of phosphor materials (inorganic and organic) for use in light-emitting diodes and dosimetry - Discusses advances in physical and chemical methods to synthesize and characterize phosphor materials




Functional Nanocomposites and Their Applications


Book Description

This book, Functional Nanocomposites and Their Applications, explains innovative developments in nanocomposites. It covers novel findings and various applications of nanocomposites in different emerging fields. Chapters cover several types of nanocomposites as well as their synthesis, manufacturing, characteristics, and applications. Special emphasis is given to innovative works on functional nanocomposites and their relevant areas of use. The authors depict the stability and functionality of nanocomposites and their applications in various sectors, such as industrial, structural, biomedical, etc. Nanocomposites in wastewater treatment, MnO2 and graphene nanostructures, computer modeling of structure and mechanical behavior, polythiophene nanocomposites, and other topics are covered in the chapters. Nanocomposites have a high surface-to-volume ratio and hence have strong mechanical characteristics, making them suitable for application in the automotive and construction sectors. Nanocomposites show better property enhancement over conventional composites i.e., properties such as electrical, thermal, mechanical, and barrier. They have good transparency and also reduce the property of flammability. Other uses include power tool housing, electronic covers, and so forth. This book will help readers easily understand the effective implementation of different types of nanocomposites, such as for environmental remediation, biomedical applications, lightweight designed goods with better mechanical, thermal, or chemical resistance qualities, etc. This book will be valuable for scientists and engineers both in academics and industry.




Metal Oxides for Next-generation Optoelectronic, Photonic, and Photovoltaic Applications


Book Description

Metal Oxides for Next Generation Optoelectronic, Photonic and Photovoltaic Applications focuses on the optoelectronic, photonic and photovoltaic behaviors of metallic oxides and closely related phenomena, from elementary principles to the latest findings. Each chapter includes a comprehensive evaluation of the synthesis and characterization of the most relevant metal oxides nanostructures for each application. In addition, there is a focus on methods to tune the materials' properties in order to improve devices performance. This book is suitable for researchers and practitioners in academia and industry working in the disciplines of materials science and engineering, chemistry and physics. Metal oxides are widely used in various optoelectronic devices, photonics, display devices, smart windows, sensors, optical components, energy-saving, and harvesting devices. Each application requires materials with their own specific properties. By controlling the particle size, shape, crystal structure, one can tune various properties of metal oxides viz. bandgap, absorption properties, conductivity, which alter the material for the specific application. - Includes discussions of synthesis and characterization of metal oxides materials for applications in next-generation optoelectronic, photonic and photovoltaic devices - Emphasizes material design strategies of metal oxide nanostructures - Focuses on the optoelectronic, photonic and photovoltaic behaviors of metallic oxides and closely related phenomena, from elementary principles to the latest findings




Long Afterglow Phosphorescent Materials


Book Description

This book presents the fundamental scientific principles of long afterglow phosphorescent materials and a comprehensive review of both commercialized afterglow materials and the latest advances in the development of novel long afterglow materials. It is designed to supply much needed information about inorganic and organic afterglow materials, including detailed treatment of structure, classification, preparation techniques, characterization, surface modification chemistry, and optical measurements. Special attention is given to technological applications such as photovoltaics, photocatalytic reactions, and lighting and molecular sensing. Although traditional long afterglow phosphors have been widely investigated and used in industry, and significant efforts have recently been made toward the use of these materials for bioimaging, there is to date no scientific monograph dedicated to afterglow materials. This book not only provides a beginners’ guide to the fundamentals of afterglow luminescence and materials, but also gives skilled researchers essential updates on emerging trends and efforts. The work provides a special focus on organic afterglow materials, which offer several advantages such as light-weight, flexible, and wide varieties; mild preparation conditions; and good processability. This book is aimed at postgraduate students, researchers, and technologists who are engaged in the synthesis, development, and commercialization of afterglow materials. It represents essential reading on interdisciplinary frontiers in the materials science, chemistry, photophysics, and biological aspects of afterglow materials.




Handbook on the Physics and Chemistry of Rare Earths


Book Description

Handbook on the Physics and Chemistry of Rare Earths: Including Actinides, Volume 60 presents the latest release in this continuous series that covers all aspects of rare earth science, including chemistry, life sciences, materials science and physics. - Presents up-to-date overviews and new developments in the field of rare earths, covering both their physics and chemistry - Contains individual chapters that are comprehensive and broad, along with critical reviews - Provides contributions from highly experienced, invited experts




Borate Phosphors


Book Description

Borate-based phosphors have attracted much attention, due to their high optical stability, low-cost synthesis via conventional and non-conventional methods and resulting technology to be environmentally friendly. This book discusses the structural and chemical parameters of borates as a phosphor including suitable synthesis methods and proper characterization of materials. Further, it includes applications of borate materials such as photoluminescence, UV application, UVU application, photo therapy application and radiological applications. Features: Provides information on borate phosphors and their structure. Aids selection of proper structural and functional borates used in applications based on phosphor technology. Discloses the modification in properties of borate functional group upon mixing or substitution with other metallic functional groups. Discusses biological applications such as photo-thermal heating-based therapy, temperature sensors, imaging, and diagnosis. Includes current trends and innovations, limitations and challenges, prospects, and scope in each chapter. This book is aimed at researchers and graduate students in inorganic materials, luminescent/optical materials, materials science/engineering, and physics.