Large-angle Convergent-beam Electron Diffraction (LACBED)


Book Description

A publication of the French Society of Microscopies, Large-Angle Convergent-Beam Electron Diffraction Applications to Crystal Defects is devoted to an important aspect of electron diffraction. Convergent-beam diffraction is capable of furnishing remarkably accurate crystallographic information. In this book, the author goes well beyond a simple presentation of the method. The description of convergent-beam electron diffraction and especially of LACBED is preceded by several preparatory chapters, in which the principles of diffraction and the nature of electron-matter interactions are clearly set out. An entire chapter is concerned with instrumentation. Another on the interpretation of diffraction patterns enables the reader to master all stages in the process. The book ends with a long chapter in which numerous applications concerned with the characterization of crystal defects are examined and analyzed.




Large-Angle Convergent-Beam Electron Diffraction Applications to Crystal Defects


Book Description

A publication of the French Society of Microscopies, Large-Angle Convergent-Beam Electron Diffraction Applications to Crystal Defects is devoted to an important aspect of electron diffraction. Convergent-beam diffraction is capable of furnishing remarkably accurate crystallographic information. In this book, the author goes well beyond a simple presentation of the method. The description of convergent-beam electron diffraction and especially of LACBED is preceded by several preparatory chapters, in which the principles of diffraction and the nature of electron-matter interactions are clearly set out. An entire chapter is concerned with instrumentation. Another on the interpretation of diffraction patterns enables the reader to master all stages in the process. The book ends with a long chapter in which numerous applications concerned with the characterization of crystal defects are examined and analyzed.







Transmission Electron Microscopy


Book Description

This text is a companion volume to Transmission Electron Microscopy: A Textbook for Materials Science by Williams and Carter. The aim is to extend the discussion of certain topics that are either rapidly changing at this time or that would benefit from more detailed discussion than space allowed in the primary text. World-renowned researchers have contributed chapters in their area of expertise, and the editors have carefully prepared these chapters to provide a uniform tone and treatment for this exciting material. The book features an unparalleled collection of color figures showcasing the quality and variety of chemical data that can be obtained from today’s instruments, as well as key pitfalls to avoid. As with the previous TEM text, each chapter contains two sets of questions, one for self assessment and a second more suitable for homework assignments. Throughout the book, the style follows that of Williams & Carter even when the subject matter becomes challenging—the aim is always to make the topic understandable by first-year graduate students and others who are working in the field of Materials Science Topics covered include sources, in-situ experiments, electron diffraction, Digital Micrograph, waves and holography, focal-series reconstruction and direct methods, STEM and tomography, energy-filtered TEM (EFTEM) imaging, and spectrum imaging. The range and depth of material makes this companion volume essential reading for the budding microscopist and a key reference for practicing researchers using these and related techniques.




Structural refinement of single crystals using digital-large angle convergent beam electron diffraction


Book Description

We explore the capability of digital-large angle convergent beam electron diffraction (D-LACBED) data for the structural refinement of single crystals. To achieve this, we use three materials as test cases. We use corundum for atomic position refi nement, copper and gallium arsenide for Debye-Waller factor (DWF) re finement. D-LACBED patterns are found to be extremely sensitive to atomic position, within 0.4 pm of reference X-ray values. The patterns are less sensitive to DWF (using the independent atom model - IAM) but nonetheless give good agreement to X-ray and Mossbauer radiation values for copper. We find the IAM to be insufficient for accurate refinement of gallium arsenide due to the influence of previously suggested strong anharmonicity and bonding within the material. Finally, we use simulation to explore the sensitivity of D-LACBED patterns through most re fineable structural parameters, providing context to the aforementioned results. During the analysis we see that higher g-vector patterns within the D-LACBED data may be more sensitive to structural parameters in general.




Advanced Transmission Electron Microscopy


Book Description

This volume expands and updates the coverage in the authors' popular 1992 book, Electron Microdiffraction. As the title implies, the focus of the book has changed from electron microdiffraction and convergent beam electron diffraction to all forms of advanced transmission electron microscopy. Special attention is given to electron diffraction and imaging, including high-resolution TEM and STEM imaging, and the application of these methods to crystals, their defects, and nanostructures. The authoritative text summarizes and develops most of the useful knowledge which has been gained over the years from the study of the multiple electron scattering problem, the recent development of aberration correctors and their applications to materials structure characterization, as well as the authors' extensive teaching experience in these areas. Advanced Transmission Electron Microscopy: Imaging and Diffraction in Nanoscience is ideal for use as an advanced undergraduate or graduate level text in support of course materials in Materials Science, Physics or Chemistry departments.




Electron Crystallography


Book Description

In the modern world of ever smaller devices and nanotechnology, electron crystallography emerges as the most important method capable of determining the structure of minute objects down to the size of individual atoms. Crystals of only a few millionths of a millimetre are studied. This is the first textbook explaining how this is done. Great attention is given to symmetry in crystals and how it manifests itself in electron microscopy and electron diffraction, and how this symmetry can be determined and taken advantage of in achieving improved electron microscopy images and solving crystal structures from electron diffraction patterns. Theory and practice are combined; experimental images, diffraction patterns, formulae and numerical data are discussed in parallel, giving the reader a complete understanding of what goes on inside the "black boxes" of computer programs. This up-to-date textbook contains the newest techniques in electron crystallography, including detailed descriptions and explanations of the recent remarkable successes in determining the very complex structures of zeolites and intermetallics. The controversial issue of whether there is phase information present in electron micrsocopy images or not is also resolved once and for all. The extensive appendices include computer labs which have been used at various courses at Stockholm University and international schools in electron crystallography, with applications to the textbook. Students can download image processing programs and follow these lab instructions to get a hands-on experience of electron crystallography.




Introduction to Texture Analysis


Book Description

Reflecting emerging methods and the evolution of the field, Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping keeps mathematics to a minimum in covering both traditional macrotexture analysis and more advanced electron-microscopy-based microtexture analysis. The authors integrate the two techniques and address the subsequent need for a more detailed explanation of philosophy, practice, and analysis associated with texture analysis. The book illustrates approaches to orientation measurement and interpretation and elucidates the fundamental principles on which measurements are based. Thoroughly updated, this Third Edition of a best-seller is a rare introductory-level guide to texture analysis. Discusses terminology associated with orientations, texture, and their representation, as well as the diffraction of radiation, a phenomenon that is the basis for almost all texture analysis Covers data acquisition, as well as representation and evaluation related to the well-established methods of macrotexture analysis Updated to include experimental details of the latest transmission or scanning electron microscope-based techniques for microstructure analysis, including electron backscatter diffraction (EBSD) Describes how microtexture data are evaluated and represented and emphasizes the advances in orientation microscopy and mapping, and advanced issues concerning crystallographic aspects of interfaces and connectivity Offers new and innovative grain boundary descriptions and examples This book is an ideal tool to help readers in the materials sciences develop a working understanding of the practice and applications of texture.




Microscopy of Semiconducting Materials 2001


Book Description

The Institute of Physics Conference Series is a leading International medium for the rapid publication of proceedings of major conferences and symposia reviewing new developments in physics and related areas. Volumes in the series comprise original refereed papers and are regarded as standard referee works. As such, they are an essential part of major libration collections worldwide. The twelfth conference on the Microscopy of Semiconducting Materials (MSM) was held at the University of Oxford, 25-29 March 2001. MSM conferences focus on recent international advances in semiconductor studies carried out by all forms of microscopy. The event was organized with scientific sponsorship by the Royal Microscopical Society, The Electron Microscopy and Analysis Group of the Institute of Physics and the Materials Research Society. With the continual shrinking of electronic device dimensions and accompanying enhancement in device performance, the understanding of semiconductor microscopic properties at the nanoscale (and even at the atomic scale) is increasingly critical for further progress to be achieved. This conference proceedings provides an overview of the latest instrumentation, analysis techniques and state-of-the-art advances in semiconducting materials science for solid state physicists, chemists, and materials scientists.




Sample Preparation Handbook for Transmission Electron Microscopy


Book Description

Successful transmission electron microscopy in all of its manifestations depends on the quality of the specimens examined. Biological specimen preparation protocols have usually been more rigorous and time consuming than those in the physical sciences. For this reason, there has been a wealth of scienti?c literature detailing speci?c preparation steps and numerous excellent books on the preparation of b- logical thin specimens. This does not mean to imply that physical science specimen preparation is trivial. For the most part, most physical science thin specimen pre- ration protocols can be executed in a matter of a few hours using straightforward steps. Over the years, there has been a steady stream of papers written on various aspects of preparing thin specimens from bulk materials. However, aside from s- eral seminal textbooks and a series of book compilations produced by the Material Research Society in the 1990s, no recent comprehensive books on thin spe- men preparation have appeared until this present work, ?rst in French and now in English. Everyone knows that the data needed to solve a problem quickly are more imp- tant than ever. A modern TEM laboratory with supporting SEMs, light microscopes, analytical spectrometers, computers, and specimen preparation equipment is an investment of several million US dollars. Fifty years ago, electropolishing, chemical polishing, and replication methods were the principal specimen preparation me- ods.