Gaseous Detonations


Book Description

My introduction to the fascinating phenomena associated with detonation waves came through appointments as an external fellow at the Department of Physics, University College of Wales, and at the Department of Mechanical Engineering, University of Leeds. Very special thanks for his accurate guidance through the large body of information on gaseous detonations are due to Professor D. H. Edwards of University College of Wales. Indeed, the onerous task of concisely enumerating the key features of unidimensional theories of detonations was undertaken by him, and Chapter 2 is based on his initial draft. When the text strays to the use of we, it is a deserved acknow ledgement of his contribution. Again, I should like to thank Professor D. Bradley of Leeds University for his enthusiastic encouragement of my efforts at developing a model of the composition limits of detonability through a relationship between run-up distance and composition of the mixture. The text has been prepared in the context of these fellowships, and I am grateful to the Central Electricity Generating Board for its permission to accept these appointments.




Handbook of Shock Waves


Book Description







Major Research Topics in Combustion


Book Description

The Institute for Computer Applications in Science and Engineer ing (ICASE) and NASA Langley Research Center (LaRC) brought together on October 2-4, 1989 experts in the various areas of com bustion with a view to expose them to some combustion problems of technological interest to LaRC and possibly foster interaction with the academic community in these research areas. The top ics chosen for this purpose were flame structure, flame stability, flame holding/extinction, chemical kinetics, turbulence-kinetics in teraction, transition to detonation, and reacting free shear layers. The lead paper set the stage by discussing the status and issues of supersonic combustion relevant to scramjet engine. Then the ex perts were called upon i) to review the current status of knowledge in the aforementioned ;:I. reas, ii) to focus on how this knowledge can be extended and applied to high-speed combustion, and iii) to suggest future directions of research in these areas. Each topic was then dealt with in a position paper followed by formal discussion papers and a general discussion involving the participants. The position papers discussed the state-of-the-art with an emphasis on key issues that needed to be resolved in the near future. The discussion papers crit ically examined these issues and filled in any lacunae therein. The edited versions of the general discussions in the form of questions from the audience and answers from the speakers are included wher ever possible to give the reader the flavor of the lively interactions that took place.







Shock Waves


Book Description

The 26th International Symposium on Shock Waves in Göttingen, Germany was jointly organised by the German Aerospace Centre DLR and the French-German Research Institute of Saint Louis ISL. The year 2007 marked the 50th anniversary of the Symposium, which first took place in 1957 in Boston and has since become an internationally acclaimed series of meetings for the wider Shock Wave Community. The ISSW26 focused on the following areas: Shock Propagation and Reflection, Detonation and Combustion, Hypersonic Flow, Shock Boundary Layer Interaction, Numerical Methods, Medical, Biological and Industrial Applications, Richtmyer Meshkov Instability, Blast Waves, Chemically Reacting Flows, Diagnostics, Facilities, Flow Visualisation, Ignition, Impact and Compaction, Multiphase Flow, Nozzles Flows, Plasmas and Propulsion. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 26 and individuals interested in these fields.