Laser Ablation in Liquids


Book Description

This book focuses on the fundamental concepts and physical and chemical aspects of pulsed laser ablation of solid targets in liquid environments and its applications in the preparation of nanomaterials and fabrication of nanostructures. The areas of focus include basic thermodynamic and kinetic processes of laser ablation in liquids, and its applic




Laser Ablation in Liquids


Book Description

This book focuses on the fundamental concepts and physical and chemical aspects of pulsed laser ablation of solid targets in liquid environments and its applications in the preparation of nanomaterials and fabrication of nanostructures. The areas of focus include basic thermodynamic and kinetic processes of laser ablation in liquids, and its applications in metal and metal oxides nanocrystals synthesis and semiconductor nanostructures fabrication. The book comprises theoretical and experimental analysis of laser ablation in liquids, research methods, and preparation techniques.




Applications of Laser Ablation


Book Description

Laser ablation refers to the phenomenon in which a low wavelength and short pulse (ns-fs) duration of laser beam irradiates the surface of a target to induce instant local vaporization of the target material generating a plasma plume consisting of photons, electrons, ions, atoms, molecules, clusters, and liquid or solid particles. This book covers various aspects of using laser ablation phenomenon for material processing including laser ablation applied for the deposition of thin films, for the synthesis of nanomaterials, and for the chemical compositional analysis and surface modification of materials. Through the 18 chapters written by experts from international scientific community, the reader will have access to the most recent research and development findings on laser ablation through original research studies and literature reviews.




Handbook of Liquids-Assisted Laser Processing


Book Description

Laser processing of solid materials has been commonly performed in gas ambient. Having the workpiece immersed into liquid, having a liquid film on it, or soaking the material with liquid gives several advantages such as removal of the debris, lowering the heat load on the workpiece, and confining the vapour and plasma, resulting in higher shock pressure on the surface. Introduced in the 1980s, neutral liquids assisted laser processing (LALP) has proved to be advantageous in the cutting of heat-sensitive materials, shock peening of machine parts, cleaning of surfaces, fabrication of micro-optical components, and for generation of nanoparticles in liquids. The liquids used range from water through organic solvents to cryoliquids. The primary aim of Handbook of Liquids-Assisted Laser Processing is to present the essentials of previous research (tabulated data of experimental conditions and results), and help researchers develop new processing and diagnostics techniques (presenting data of liquids and a review of physical phenomena associated with LALP). Engineers can use the research results and technological innovation information to plan their materials processing tasks. Laser processing in liquids has been applied to a number of different tasks in various fields such as mechanical engineering, microengineering, chemistry, optics, and bioscience. A comprehensive glossary with definitions of the terms and explanations has been added. The book covers the use of chemically inert liquids under normal conditions. Laser chemical processing examples are presented for comparison only. - First book in this rapidly growing field impacting mechanical and micro/nano-engineering - Covers different kinds of liquid-assisted laser processing of a large variety of materials - Covers lasers emitting from UV to IR with pulse lengths down to femtoseconds - Reviews over 500 scientific articles and 300 inventions and tabulates their main features - Gives a qualitative and quantitative description of the physical phenomena associated with LALP - Tabulates 61 parameters for 100 liquids - Glossary of over 200 terms and abbreviations




Handbook of Laser Micro- and Nano-Engineering


Book Description

This handbook provides a comprehensive review of the entire field of laser micro and nano processing, including not only a detailed introduction to individual laser processing techniques but also the fundamentals of laser-matter interaction and lasers, optics, equipment, diagnostics, as well as monitoring and measurement techniques for laser processing. Consisting of 11 sections, each composed of 4 to 6 chapters written by leading experts in the relevant field. Each main part of the handbook is supervised by its own part editor(s) so that high-quality content as well as completeness are assured. The book provides essential scientific and technical information to researchers and engineers already working in the field as well as students and young scientists planning to work in the area in the future. Lasers found application in materials processing practically since their invention in 1960, and are currently used widely in manufacturing. The main driving force behind this fact is that the lasers can provide unique solutions in material processing with high quality, high efficiency, high flexibility, high resolution, versatility and low environmental load. Macro-processing based on thermal process using infrared lasers such as CO2 lasers has been the mainstream in the early stages, while research and development of micro- and nano-processing are becoming increasingly more active as short wavelength and/or short pulse width lasers have been developed. In particular, recent advances in ultrafast lasers have opened up a new avenue to laser material processing due to the capabilities of ultrahigh precision micro- and nanofabrication of diverse materials. This handbook is the first book covering the basics, the state-of-the-art and important applications of the dynamic and rapidly expanding discipline of laser micro- and nanoengineering. This comprehensive source makes readers familiar with a broad spectrum of approaches to solve all relevant problems in science and technology. This handbook is the ultimate desk reference for all people working in the field.




Pulsed Laser Ablation


Book Description

Pulsed laser–based techniques for depositing and processing materials are an important area of modern experimental and theoretical scientific research and development, with promising, challenging opportunities in the fields of nanofabrication and nanostructuring. Understanding the interplay between deposition/processing conditions, laser parameters, as well as material properties and dimensionality is demanding for improved fundamental knowledge and novel applications. This book introduces and discusses the basic principles of pulsed laser–matter interaction, with a focus on its peculiarities and perspectives compared to other conventional techniques and state-of-the-art applications. The book starts with an overview of the growth topics, followed by a discussion of laser–matter interaction depending on laser pulse duration, background conditions, materials, and combination of materials and structures. The information outlines the foundation to introduce examples of laser nanostructuring/processing of materials, pointing out the importance of pulsed laser–based technologies in modern (nano)science. With respect to similar texts and monographs, the book offers a comprehensive review including bottom-up and top-down laser-induced processes for nanoparticles and nanomicrostructure generation. Theoretical models are discussed by correlation with advanced experimental protocols in order to account for the fundamentals and underline physical mechanisms of laser–matter interaction. Reputed, internationally recognized experts in the field have contributed to this book. In particular, this book is suitable for a reader (graduate students as well as postgraduates and more generally researchers) new to the subject of pulsed laser ablation in order to gain physical insight into and advanced knowledge of mechanisms and processes involved in any deposition/processing experiment based on pulsed laser–matter interaction. Since knowledge in the field is given step by step comprehensively, this book serves as a valid introduction to the field as well as a foundation for further specific readings.




Laser Ablation and Its Applications


Book Description

Laser ablation describes the interaction of intense optical fields with matter, in which atoms are selectively driven off by thermal or nonthermal mechanisms. The field of laser ablation physics is advancing so rapidly that its principal results are seen only in specialized journals and conferences. This is the first book that combines the most recent results in this rapidly advancing field with authoritative treatment of laser ablation and its applications, including the physics of high-power laser-matter interaction. Many practical applications exist, ranging from inertial confinement fusion to propulsion of aerostats for pollution monitoring to laser ignition of hypersonic engines to laser cleaning nanoscale contaminants in high-volume computer hard drive manufacture to direct observation of the electronic or dissociative states in atoms and molecules, to studying the properties of materials during 200kbar shocks developed in 200fs. Selecting topics which are representative of such a broad field is difficult. Laser Ablation and its Applications emphasizes the wide range of these topics rather than - as is so often the case in advanced science – focusing on one specialty or discipline. The book is divided into four sections: theory and modeling, ultrafast interactions, material processing and laser-matter interaction in novel regimes. The latter range from MALDI to ICF, SNOM’s and femtosecond nanosurgery to laser space propulsion. The book arose from the SPIE series of High Power Laser Ablation Symposia which began in 1998. It is intended for a graduate course in laser interactions with plasmas and materials, but it should be accessible to anyone with a graduate degree in physics or engineering. It is also intended as a major reference work to familiarize scientists just entering the field with laser ablation and its applications.




Laser Ablation


Book Description

Laser Ablation provides a broad picture of the current understanding of laser ablation and its many applications, from the views of key contributors to the field. Discussed are in detail the electronic processes in laser ablation of semiconductors and insulators, the post-ionization of laser-desorbed biomolecules, Fourier-transform mass spectroscopy, the interaction of laser radiation with organic polymers, laser ablation and optical surface damage, laser desorption/ablation with laser detection, and laser ablation of superconducting thin films.




Laser Ablation and Desorption


Book Description

This volume introduces the subject of laser ablation and desorption to scientists and engineers. It covers fundamental experimental and theoretical tools, models, and techniques, and introduces the most important applications. Clearly written and organized in a straightforward manner, Laser Ablation and Desorption lead the reader straight through the fundamentals of laser-surface interactions. Each chapter is self-contained and includes references to other chapters as necessary, so that readers may begin with the topic of greatest interest and follow the references to other aspects of the subject contained within the book.Key Features* Provides up-to-date information about one of the most active fields in physics today* Written and edited by major figures in the field of laser ablation and desorption* Represents the most comprehensive treatment of the state-of-the-art available




Pulsed Laser Ablation of Solids


Book Description

The book introduces ‘the state of the art' of pulsed laser ablation and its applications. It is based on recent theoretical and experimental studies. The book reaches from the basics to advanced topics of pulsed laser ablation. Theoretical and experimental fundamental phenomena involved in pulsed laser ablation are discussed with respect to material properties, laser wavelength, fluence and intensity regime of the light absorbed linearly or non-linearly in the target material. The energy absorbed by the electrons leads to atom/molecule excitation, ionization and/or direct chemical bond breaking and is also transferred to the lattice leading to material heating and phase transitions. Experimental non-invasive optical methods for analyzing these phenomena in real time are described. Theoretical models for pulsed laser ablation and phase transitions induced by laser beams and laser-vapour/plasma interaction during the plume expansion above the target are also presented. Calculations of the ablation speed and dimensions of the ablated micro- and nano-structures are performed. The validity and required refinement of different models in different experimental conditions is provided. The pulsed laser deposition process which bases on collecting the ablated particles on a surface is analyzed in terms of efficiency and quality of the deposited films as a function of ambient conditions, target material, laser parameters and substrate characteristics. The interaction between the incident laser and the ablation plasma is analyzed with respect to its influence on the structures of the deposited films and its capacity to generate high harmonics and single attosecond pulses which are highly desirable in pump-probe experiments.