Radar and Laser Cross Section Engineering


Book Description

There have been many new developments in the ten years since the first edition of Radar and Laser Cross Section Engineering was published. Stealth technology is now an important consideration in the design of all types of platforms. The second edition includes a more extensive introduction that covers the important aspects of stealth technology and the unique tradeoffs involved in stealth design. Prediction, reduction, and measurement of electromagnetic scattering from complex three-dimensional targets remains the primary emphasis of this text, developed by the author from courses taught at the Naval Postgraduate School. New topics on computational methods like the finite element method and the finite integration technique are covered, as well as new areas in the application of radar absorbing material and artificial metamaterials. Matlab [registered] software, homework problems, and a solution manual (available to instructors) supplement the text. Written as an instructional text, this book is recommended for upper-level undergraduate and graduate students. introduction to the physics and mathematics of radar cross section in order to better understand the interdisciplinary aspects of stealth. Matlab is a registered trademark of The MathWorks, Inc.




Laser Radar


Book Description

In today's world, the range of technologies with the potential to threaten the security of U.S. military forces is extremely broad. These include developments in explosive materials, sensors, control systems, robotics, satellite systems, and computing power, to name just a few. Such technologies have not only enhanced the capabilities of U.S. military forces, but also offer enhanced offensive capabilities to potential adversaries - either directly through the development of more sophisticated weapons, or more indirectly through opportunities for interrupting the function of defensive U.S. military systems. Passive and active electro-optical (EO) sensing technologies are prime examples. Laser Radar considers the potential of active EO technologies to create surprise; i.e., systems that use a source of visible or infrared light to interrogate a target in combination with sensitive detectors and processors to analyze the returned light. The addition of an interrogating light source to the system adds rich new phenomenologies that enable new capabilities to be explored. This report evaluates the fundamental, physical limits to active EO sensor technologies with potential military utility; identifies key technologies that may help overcome the impediments within a 5-10 year timeframe; considers the pros and cons of implementing each existing or emerging technology; and evaluates the potential uses of active EO sensing technologies, including 3D mapping and multi-discriminate laser radar technologies.




Signals, Noise, and Active Sensors


Book Description

Sonar, radar and laser radar have evolved to the point where many commercial, scientific and military applications exist for these sensing systems. Each of these sensors involves problems peculiar to themselves. Deals with solutions to the problems currently associated with signal detection by the application of a variety of subsets of Communication and Estimation Theory. Covers such topics as noise and random processes; noise statistics; how to detect signals in noise; waveform analysis; non-coherent detection of a single pulse and more.







Image Recognition and Classification


Book Description

"Details the latest image processing algorithms and imaging systems for image recognition with diverse applications to the military; the transportation, aerospace, information security, and biomedical industries; radar systems; and image tracking systems."




Driver's Guide to Police Radar


Book Description




Airborne Maritime Surveillance Radar


Book Description

Today, air-to-surface vessel (ASV) radars, or more generally maritime surveillance radars, are installed on maritime reconnaissance aircraft for long-range detection, tracking and classification of surface ships (ASuW - Air to Surface Warfare) and for hunting submarines (ASW - anti-submarine warfare). Such radars were first developed in the UK during WWII as part of the response to the threat to shipping from German U-Boats. This book describes the ASV radars developed in the UK after WWII (1946-2000) and used by the RAF for long-range maritime surveillance.




Laser Beam Propagation Through Random Media


Book Description

Since publication of the first edition of this text in 1998, there have been several new, important developments in the theory of beam wave propagation through a random medium, which have been incorporated into this second edition. Also new to this edition are models for the scintillation index under moderate-to-strong irradiance fluctuations; models for aperture averaging based on ABCD ray matrices; beam wander and its effects on scintillation; theory of partial coherence of the source; models of rough targets for ladar applications; phase fluctuations; analysis of other beam shapes; plus expanded analysis of free-space optical communication systems and imaging systems.




Laser Beam Scintillation with Applications


Book Description

Renewed interest in laser communication systems has sparked development of useful new analytic models. This book discusses optical scintillation and its impact on system performance in free-space optical communication and laser radar applications, with a detailed look at propagation phenomena and the role of scintillation on system behavior. Intended for practicing engineers, scientists, and students.




ICOL-2019


Book Description

This book presents peer-reviewed articles from the International Conference on Optics and Electro-optics, ICOL-2019, held at Dehradun in India. It brings together leading researchers and professionals in the field of optics/optical engineering/optical materials and provides a platform to present and establish collaborations in this important area, with the theme “Trends in Electro-optics Instrumentation for Strategic Applications”. Topics covered but not limited to are Optical Engineering, Optical Thin Films, Optical Materials, IR Sensors, Image Processing & Systems, Photonic Band Gap Materials, Adaptive Optics, Optical Image Processing & Holography, Lasers, Fiber Lasers & its Applications, Diffractive Optics, Innovative packaging of Optical Systems, Nanophotonics Devices and Applications, Optical Interferometry & Metrology, Terahertz, Millimeter Wave & Microwave Photonics, Fiber, Integrated & Nonlinear Optics and Optics and Electro-optics for Strategic Applications.