Lasers and Excited States of Rare Earths


Book Description

The possibility of stimulated light emission was discussed by Einstein in 1917, eight years before the quantum-mechanical description of energy levels of many-electron systems. Though it is imperative to use samples having optical properties greatly different from the stan dard continuous spectrum of opaque objects ("black body" radia tion) it is not always necessary to restrict the study to monatomic entities. Thus, spectral lines can be obtained (in absorption and in emission) from lanthanide compounds, containing from one to thir teen 4f electrons going from trivalent cerium to ytterbium, that are nearly as sharp as the ones from gaseous atoms. However, the presence of adjacent atoms modifies the simple picture of an isolated electron configuration, and in particular, it is possible to pump excited levels efficiently by energy transfer from species with intense absorption bands, such as the inter-shell transitions of other lanthanides and of thallium(I), lead(II) and bismuth(III) or the electron transfer bands of the uranyl ion or other complexes. On the other hand, it is possible to diminuish the mUlti-phonon relaxation (competing with sharp line luminescence) by selecting vitreous or crystalline materials with low phonon energies. Obviously, one cannot circumvent the conservation of energy by lasers, but they may have unprecedented consequences for the future by allowing nuclear fusion of light elements, effects of non-linear optics and time-resolved spectroscopy, besides the more conventional applications of coherent light beams with negligible angular extension.




Rare-Earth-Doped Fiber Lasers and Amplifiers, Revised and Expanded


Book Description

A discussion of the theories, operating characteristics, and current technology of main fiber laser and amplifier devices based on rare-earth-doped silica and fluorozirconate fibers. It describes the principles, designs, and properties of the erbium-doped fiber amplifier and its role as the cornerstone component in optical communication systems. This second edition contains new and revised material reflecting major developments in academia and industry.




Spectroscopic Properties of Rare Earths in Optical Materials


Book Description

Aimed at researchers and graduate students, this book provides up-to-date information about the electronic interactions that impact the optical properties of rare earth ions in solids. Its goal is to establish a connection between fundamental principles and the materials properties of rare-earth activated luminescent and laser optical materials. The theoretical survey and introduction to spectroscopic properties covers electronic energy level structure, intensities of optical transitions, ion-phonon interactions, line broadening, and energy transfer and up-conversion. An important aspect of the book lies in its deep and detailed discussions of materials properties and the potential of new applications such as optical storage, information processing, nanophotonics, and molecular probes that have been identified in recent experimental studies. This volume will be a valuable reference book on advanced topics of rare earth spectroscopy and materials science.




Extractive Metallurgy of Niobium


Book Description

The growth and development witnessed today in modern science, engineering, and technology owes a heavy debt to the rare, refractory, and reactive metals group, of which niobium is a member. Extractive Metallurgy of Niobium presents a vivid account of the metal through its comprehensive discussions of properties and applications, resources and resource processing, chemical processing and compound preparation, metal extraction, and refining and consolidation. Typical flow sheets adopted in some leading niobium-producing countries for the beneficiation of various niobium sources are presented, and various chemical processes for producing pure forms of niobium intermediates such as chloride, fluoride, and oxide are discussed. The book also explains how to liberate the metal from its intermediates and describes the physico-chemical principles involved. It is an excellent reference for chemical metallurgists, hydrometallurgists, extraction and process metallurgists, and minerals processors. It is also valuable to a wide variety of scientists, engineers, technologists, and students interested in the topic.




Crystalline Lasers


Book Description

By the end of the 1970s, crystalline lasers were widely used in science, engineering, medicine, and technology. The types of lasers used have continued to grow in number to include newly discovered crystalline hosts, previously known compounds generating at other spectral wavelengths, and broadband tunable stimulated emission. This has led to the creation of an extremely promising new generation of crystalline lasers that are both highly efficient and more reliable. The major part of this book is devoted to describing multilevel operating laser schemes for stimulated emission excitation in insulating crystals doped with lanthanide ions. The first part of Crystalline Lasers deals with the history of the physics and spectroscopy of insulating laser crystals. The chapters in the second part of the book present results from the study of Stark-energy levels of generating ions in laser crystals and their radiative and nonradiative intermanifold transition characteristics. This section includes extensive tabular data and reference information. Popular and novel operating schemes of crystalline lasers are covered in Part 3. In the chapters in the fourth part of the book, the newest technologies in the physics and engineering of crystalline lasers are considered. The results of investigations into laser action under selective excitations, miniature crystalline lasers, and the properties of nonlinear activated laser crystals are presented and analyzed. Crystalline Lasers summarizes and reviews the results of many years of research and studies of activator ions and multilevel operating laser schemes, and discusses exciting prospects of using these systems to create new types of crystalline lasers. This book will be of use to laser scientists and engineers, physicists, and chemical engineers.




Complexes of the Rare Earths


Book Description

Complexes of the Rare Earths focuses on the properties, characteristics, and reactions of rare earth complexes. The book first offers information on the complexes of rare earths and coordination through nitrogen of the donors. Discussions focus on the factors influencing the formation of complexes, phenanthroline, phthalocyanine, pyridine, quinolone, and urotropine. The text then elaborates on coordination through oxygen of the donors, including acids, alcohols, adducts, aldehydes, and ketones. The publication takes a look at coordination through both oxygen and nitrogen of the donors; coordination through atoms other than nitrogen and oxygen; and spectral characteristics of rare earths and their complexes. Topics include crystal field splitting, intensification or hypersensitivity of absorption bands, electron transfer spectra and optical electronegativity, and nephelauxetic effect. The text further ponders on luminescence of rare earths in chelates and in different environments, laser and applicability of rare earths as laser materials, and rare earths and the actinides. The book is a dependable source material for readers interested in the complexes of rare earths.




Compact Blue-Green Lasers


Book Description

William Risk, Timothy Gosnell and Arto Nurmikko have brought together their diverse expertise from industry and academia to write the first fully comprehensive book on the generation and application of blue-green lasers. This volume describes the theory and practical implementation of three techniques for the generation of blue-green light: nonlinear frequency conversion of infrared lasers, upconversion lasers, and wide bandgap semiconductor diode lasers. In addition, it looks at the various applications that have driven the development of compact sources of blue-green light, and reflects on the recent application of these lasers in high-density data storage, color displays, reprographics, and biomedical technology. Compact Blue-Green Lasers is suitable for graduate-level courses or as a reference for academics and professionals in optics, applied physics, and electrical engineering.




New Frontiers in Rare Earth Science and Applications


Book Description

New Frontiers in Rare Earth Science and Applications, Volume II documents the proceedings of the International Conference on Rare Earth Development and Applications held in Beijing on September 10-14, 1985. This compilation discusses quenching and sensitization of rare earth luminescence, magnetic properties of rare earth intermetallics, and microcapsulated rare earth-nickel hydride-forming materials. The effect of rare earth on the quality and properties of hot-rolled steel strips and role of yttrium in heavy section spheroidal graphite cast iron are also elaborated. This book likewise covers the application of scandium oxide in an electron emission material and study on the effect of rare earth elements on the yield of wheat. This publication is beneficial to researchers and scientists conducting work in the field of earth science.




Handbook on Rare Earth Metals and Alloys (Properties, Extraction, Preparation and Applications)


Book Description

Rare earths are essential constituents of more than 100 mineral species and present in many more through substitution. They have a marked geochemical affinity for calcium, titanium, niobium, zirconium, fluoride, phosphate and carbonate ions. Industrially important minerals, which are utilized at present for rare earths production, are essentially three, namely monazite, bastnasite and xenotime. In modern time techniques for exploration of rare earths and yttrium minerals include geologic identification of environments of deposition and surface as well as airborne reconnaissance with magnetometric and radiometric equipment. There are numerous applications of rare earths such as in glass making industry, cracking catalysts, electronic and optoelectronic devices, medical technology, nuclear technology, agriculture, plastic industry etc. Lot of metals and alloys called rare earth are lying in the earth which required to be processed. Some of the important elements extracted from rare earths are uranium, lithium, beryllium, selenium, platinum metals, tantalum, silicon, molybdenum, manganese, chromium, cadmium, titanium, tungsten, zirconium etc. There are different methods involved in production of metals and non metals from rare earths for example; separation, primary crushing, secondary crushing, wet grinding, dry grinding etc. The rare earths are silver, silverymwhite, or gray metals; they have a high luster, but tarnish readily in air, have high electrical conductivity. The rare earths share many common properties this makes them difficult to separate or even distinguish from each other. There are very small differences in solubility and complex formation between the rare earths. The rare earth metals naturally occur together in minerals. Rare earths are found with non metals, usually in the 3+ oxidation state. At present all the rare earth resources in India are in the form of placer monazite deposits, which also carry other industrially important minerals like ilmenite, rutile, zircon, sillimanite and garnet. Some of the fundamentals of the book are commercially important rare earth minerals, exploration for rare earth resources, rare earth resources of the world, some rare earth minerals and their approximate compositions, rare earths in cracking catalysts, rare earth based phosphors, interdependence of applications and production of rare earths, uranium alloys, conversion of ores to lithium chemicals, characterization and analysis of very pure silicon, derivation of molybdenum metal, electoplating and chromizing, electrolytic production of titanium, heat treatment of titanium alloys, tensile properties of alloys etc. The book covers occurrence of rare earth, resources of the world, production of lithium metals, compounds derived from the metals, chemical properties of beryllium, uses of selenium, derivation of molybdenum metals, ore concentration and treatment and many more. This is a unique book of its kind, which will be a great asset for scientists, researchers, technocrats and entrepreneurs. TAGS Applications of Rare Earth Metals and Alloys, Beryllium, Best small and cottage scale industries, Boron, Business guidance for Rare earth metals and alloys processing, Business Plan for a Startup Business, Cadmium, Chromium, Extraction and Applications of Rare Earth Metals and Alloys, Extraction of Rare Earth Metals and Alloys, How to Start a Rare earth metals and alloys Business, How to Start a Rare earth metals and alloys extraction?, How to start a successful Rare earth metals and alloys extraction, How to start rare earth alloys Processing Industry in India, How to start rare earth metals Processing Industry in India, Industrial Uses of Rare Earths metals and alloys, Lithium, Magnesium Alloys with Rare-Earth Metal, Magnetic Properties of Rareā€Earth Metals and Alloys, Manganese, Molybdenum, Most Profitable Rare earth metals and alloys Processing Business Ideas, New small scale ideas in Rare earth metals and alloys processing industry, Platinum Metals, Preparation of Rare Earth Metals and Alloys, Profitable small and cottage scale industries, Profitable Small Scale Rare earth metals and alloys extraction, Project for startups, Properties of Rare Earth Metals and Alloys, Rare Earth Alloys, Rare Earth Elements - Metals, Minerals, Mining, Uses, Rare earth elements (REE): industrial technology, Rare Earth Elements Applications, Rare earth elements properties, Rare earth elements separation process, Rare Earth elements, Rare earth extraction process, Rare Earth Industry, Rare earth metals and alloy extraction process, Rare earth metals and alloys Based Profitable Projects, Rare earth metals and alloys Based Small Scale Industries Projects, Rare earth metals and alloys extraction Business, Rare earth metals and alloys Processing Industry in India, Rare earth metals and alloys Processing Projects, Rare Earth Metals and Alloys, Rare earth metals India, Rare Earth Metals Production and Alloys with Properties, Rare earth metals uses, Rare Earth Metals, Rare Earth Resources, Rare minerals list, Selenium, Setting up and opening your Rare earth metals and alloys Business, Silicon, Small Scale Rare earth metals and alloys Processing Projects, Small scale Rare earth metals and alloys production line, Small Start-up Business Project, Start up India, Stand up India, Starting a Rare earth metals and alloys Processing Business, Start-up Business Plan for Rare earth metals and alloys processing, Startup ideas, Startup Project, Startup Project for Rare earth metals and alloys processing, Startup project plan, Tantalum, Titanium, Tungsten, Uranium, Uses of rare earth metals and alloys in metallurgy, Where are rare earth metals found?, Zirconium




Handbook on the Physics and Chemistry of Rare Earths


Book Description

Handbook on the Physics and Chemistry of Rare Earths: Including Actinides, Volume 51, is a continuous series of books covering all aspects of rare earth science, including chemistry, life sciences, materials science and physics. This latest release includes chapters on the Effect of Pressure on the Interplay Between Orbital and Magnetic Ordering, Kondo Effect, Valence Fluctuation, and Superconductivity in Rare-Earth Compounds and a section on Rare-Earth: Doped Waveguide Amplifiers and Lasers. The book's main emphasis is on rare earth elements [Sc, Y, and the lanthanides (La through Lu], but whenever relevant, information is also included on the closely related actinide elements. Individual chapters in the ongoing series consist of comprehensive, broad, up-to-date, critical reviews written by highly experienced, invited experts. The series, which was started in 1978 by Professor Karl A. Gschneidner Jr., combines, and integrates, both the fundamentals and applications of these elements with two published volumes each year. - Presents up-to-date overviews and new developments in the field of rare earths, covering both their physics and chemistry - Contains Individual chapters that are comprehensive and broad, with critical reviews - Provides contributions from highly experienced, invited experts