Lecture Notes on Field Theory in Condensed Matter Physics


Book Description

The aim of this book is to introduce a graduate student to selected concepts in condensed matter physics for which the language of field theory is ideally suited. The examples considered in this book are those of superfluidity for weakly interacting bosons, collinear magnetism, and superconductivity. Quantum phase transitions are also treated in the context of quantum dissipative junctions and interacting fermions constrained to one-dimensional position space. The style of presentation is sufficiently detailed and comprehensive that it only presumes familiarity with undergraduate physics.




Condensed Matter Field Theory


Book Description

This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.




Field Theory, Topology and Condensed Matter Physics


Book Description

This topical volume contains five pedagogically written articles on the interplay between field theory and condensed matter physics. The main emphasis is on the topological aspects, and especially quantum Hall fluids, and superconductivity is treated extensively. Other topics are conformal invariance and path integrals. The articles are carefully edited so that the book could ideally serve as a text for special graduate courses.




Field Theories of Condensed Matter Physics


Book Description

Presenting the physics of the most challenging problems in condensed matter using the conceptual framework of quantum field theory, this book is of great interest to physicists in condensed matter and high energy and string theorists, as well as mathematicians. Revised and updated, this second edition features new chapters on the renormalization group, the Luttinger liquid, gauge theory, topological fluids, topological insulators and quantum entanglement. The book begins with the basic concepts and tools, developing them gradually to bring readers to the issues currently faced at the frontiers of research, such as topological phases of matter, quantum and classical critical phenomena, quantum Hall effects and superconductors. Other topics covered include one-dimensional strongly correlated systems, quantum ordered and disordered phases, topological structures in condensed matter and in field theory and fractional statistics.




Statistical Approach to Quantum Field Theory


Book Description

This new expanded second edition has been totally revised and corrected. The reader finds two complete new chapters. One covers the exact solution of the finite temperature Schwinger model with periodic boundary conditions. This simple model supports instanton solutions – similarly as QCD – and allows for a detailed discussion of topological sectors in gauge theories, the anomaly-induced breaking of chiral symmetry and the intriguing role of fermionic zero modes. The other new chapter is devoted to interacting fermions at finite fermion density and finite temperature. Such low-dimensional models are used to describe long-energy properties of Dirac-type materials in condensed matter physics. The large-N solutions of the Gross-Neveu, Nambu-Jona-Lasinio and Thirring models are presented in great detail, where N denotes the number of fermion flavors. Towards the end of the book corrections to the large-N solution and simulation results of a finite number of fermion flavors are presented. Further problems are added at the end of each chapter in order to guide the reader to a deeper understanding of the presented topics. This book is meant for advanced students and young researchers who want to acquire the necessary tools and experience to produce research results in the statistical approach to Quantum Field Theory.




Modern Theories of Many-Particle Systems in Condensed Matter Physics


Book Description

Condensed matter systems where interactions are strong are inherently difficult to analyze theoretically. The situation is particularly interesting in low-dimensional systems, where quantum fluctuations play a crucial role. Here, the development of non-perturbative methods and the study of integrable field theory have facilitated the understanding of the behavior of many quasi one- and two-dimensional strongly correlated systems. In view of the same rapid development that has taken place for both experimental and numerical techniques, as well as the emergence of novel testing-grounds such as cold atoms or graphene, the current understanding of strongly correlated condensed matter systems differs quite considerably from standard textbook presentations. The present volume of lecture notes aims to fill this gap in the literature by providing a collection of authoritative tutorial reviews, covering such topics as quantum phase transitions of antiferromagnets and cuprate-based high-temperature superconductors, electronic liquid crystal phases, graphene physics, dynamical mean field theory applied to strongly correlated systems, transport through quantum dots, quantum information perspectives on many-body physics, frustrated magnetism, statistical mechanics of classical and quantum computational complexity, and integrable methods in statistical field theory. As both graduate-level text and authoritative reference on this topic, this book will benefit newcomers and more experienced researchers in this field alike.




Lecture Notes on Field Theory in Condensed Matter Physics


Book Description

The aim of this book is to introduce a graduate student to selected concepts in condensed matter physics for which the language of field theory is ideally suited. The examples considered in this book are those of superfluidity for weakly interacting bosons, collinear magnetism, and superconductivity. Quantum phase transitions are also treated in the context of quantum dissipative junctions and interacting fermions constrained to one-dimensional position space. The style of presentation is sufficiently detailed and comprehensive that it only presumes familiarity with undergraduate physics.




Field Theory


Book Description

Traditionally, field theory is taught through canonical quantization with a heavy emphasis on high energy physics. However, the techniques of field theory are applicable as well and are extensively used in various other areas of physics such as consdensed matter, nuclear physics and statistical mechanics. The path integral approach brings out this feature most clearly. In this book, the path integral approach is developed in detail completely within the context of quantum mechanics. Subsequently, it is applied to various areas of physics.