Lectures on Block Theory


Book Description

Block theory is a part of the theory of modular representation of finite groups and deals with the algebraic structure of blocks. In this volume Burkhard Külshammer starts with the classical structure theory of finite dimensional algebras, and leads up to Puigs main result on the structure of the so called nilpotent blocks, which he discusses in the final chapter. All the proofs in the text are given clearly and in full detail, and suggestions for further reading are also included. For researchers and graduate students interested in group theory or representation theory, this book will form an excellent self contained introduction to the theory of blocks.







Lectures on Invariant Theory


Book Description

The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.







Groups '93 Galway/St Andrews: Volume 1


Book Description

Representing the wealth and diversity of group theory for experienced researchers as well as new postgraduates, this two-volume book contains selected papers from the international conference which was held at University College Galway in August 1993.




Arithmetic of Diagonal Hypersurfaces Over Finite Fields


Book Description

This book is concerned with the arithmetic of diagonal hypersurfaces over finite fields.




Representation Theory and Algebraic Geometry


Book Description

For any researcher working in representation theory, algebraic or arithmetic geometry.




Representations of Solvable Groups


Book Description

Representation theory plays an important role in algebra, and in this book Manz and Wolf concentrate on that part of the theory which relates to solvable groups. The authors begin by studying modules over finite fields, which arise naturally as chief factors of solvable groups. The information obtained can then be applied to infinite modules, and in particular to character theory (ordinary and Brauer) of solvable groups. The authors include proofs of Brauer's height zero conjecture and the Alperin-McKay conjecture for solvable groups. Gluck's permutation lemma and Huppert's classification of solvable two-transive permutation groups, which are essentially results about finite modules of finite groups, play important roles in the applications and a new proof is given of the latter. Researchers into group theory, representation theory, or both, will find that this book has much to offer.




Character Theory for the Odd Order Theorem


Book Description

The famous and important theorem of W. Feit and J. G. Thompson states that every group of odd order is solvable, and the proof of this has roughly two parts. The first part appeared in Bender and Glauberman's Local Analysis for the Odd Order Theorem which was number 188 in this series. This book provides the character-theoretic second part and thus completes the proof. All researchers in group theory should have a copy of this book in their library.




Number Theory


Book Description

This is the fourteenth annual volume arising from the Seminaire de Theorie de Nombres de Paris covering the whole spectrum of number theory.