Short Calculus


Book Description

From the reviews "This is a reprint of the original edition of Lang’s ‘A First Course in Calculus’, which was first published in 1964....The treatment is ‘as rigorous as any mathematician would wish it’....[The exercises] are refreshingly simply stated, without any extraneous verbiage, and at times quite challenging....There are answers to all the exercises set and some supplementary problems on each topic to tax even the most able." --Mathematical Gazette




Lectures On Computation


Book Description

Covering the theory of computation, information and communications, the physical aspects of computation, and the physical limits of computers, this text is based on the notes taken by one of its editors, Tony Hey, on a lecture course on computation given b




The Hitchhiker's Guide to Calculus


Book Description

The Hitchhiker's Guide to Calculus begins with a rapid view of lines and slope. Spivak then takes up non-linear functions and trigonometric functions. He places the magnifying glass on curves in the next chapter and effortlessly leads the reader to the idea of derivative. In the next chapter he tackles speed and velocity, followed by the derivative of sine. Maxima and minima are next. Rolle's theorem and the MVT form the core of Chapter 11, "Watching Experts at Play." The Hitchhiker's Guide to Calculus closes with a chapter on the integral, the fundamental theorem, and applications of the integral.




A Companion to Analysis


Book Description

This book not only provides a lot of solid information about real analysis, it also answers those questions which students want to ask but cannot figure how to formulate. To read this book is to spend time with one of the modern masters in the subject. --Steven G. Krantz, Washington University, St. Louis One of the major assets of the book is Korner's very personal writing style. By keeping his own engagement with the material continually in view, he invites the reader to a similarly high level of involvement. And the witty and erudite asides that are sprinkled throughout the book are a real pleasure. --Gerald Folland, University of Washingtion, Seattle Many students acquire knowledge of a large number of theorems and methods of calculus without being able to say how they hang together. This book provides such students with the coherent account that they need. A Companion to Analysis explains the problems which must be resolved in order to obtain a rigorous development of the calculus and shows the student how those problems are dealt with. Starting with the real line, it moves on to finite dimensional spaces and then to metric spaces. Readers who work through this text will be ready for such courses as measure theory, functional analysis, complex analysis and differential geometry. Moreover, they will be well on the road which leads from mathematics student to mathematician. Able and hard working students can use this book for independent study, or it can be used as the basis for an advanced undergraduate or elementary graduate course. An appendix contains a large number of accessible but non-routine problems to improve knowledge and technique.




The Calculus Lifesaver


Book Description

For many students, calculus can be the most mystifying and frustrating course they will ever take. Based upon Adrian Banner's popular calculus review course at Princeton University, this book provides students with the essential tools they need not only to learn calculus, but also to excel at it.




Introduction to the Calculus of Variations


Book Description

The calculus of variations is one of the oldest subjects in mathematics, yet is very much alive and is still evolving. Besides its mathematical importance and its links to other branches of mathematics, such as geometry or differential equations, it is widely used in physics, engineering, economics and biology.This book serves both as a guide to the expansive existing literature and as an aid to the non-specialist ? mathematicians, physicists, engineers, students or researchers ? in discovering the subject's most important problems, results and techniques. Despite the aim of addressing non-specialists, mathematical rigor has not been sacrificed; most of the theorems are either fully proved or proved under more stringent conditions.In this new edition, the chapter on regularity has been significantly expanded and 27 new exercises have been added. The book, containing a total of 103 exercises with detailed solutions, is well designed for a course at both undergraduate and graduate levels.




Mathematics Form and Function


Book Description

This book records my efforts over the past four years to capture in words a description of the form and function of Mathematics, as a background for the Philosophy of Mathematics. My efforts have been encouraged by lec tures that I have given at Heidelberg under the auspices of the Alexander von Humboldt Stiftung, at the University of Chicago, and at the University of Minnesota, the latter under the auspices of the Institute for Mathematics and Its Applications. Jean Benabou has carefully read the entire manuscript and has offered incisive comments. George Glauberman, Car los Kenig, Christopher Mulvey, R. Narasimhan, and Dieter Puppe have provided similar comments on chosen chapters. Fred Linton has pointed out places requiring a more exact choice of wording. Many conversations with George Mackey have given me important insights on the nature of Mathematics. I have had similar help from Alfred Aeppli, John Gray, Jay Goldman, Peter Johnstone, Bill Lawvere, and Roger Lyndon. Over the years, I have profited from discussions of general issues with my colleagues Felix Browder and Melvin Rothenberg. Ideas from Tammo Tom Dieck, Albrecht Dold, Richard Lashof, and Ib Madsen have assisted in my study of geometry. Jerry Bona and B.L. Foster have helped with my examina tion of mechanics. My observations about logic have been subject to con structive scrutiny by Gert Miiller, Marian Boykan Pour-El, Ted Slaman, R. Voreadou, Volker Weispfennig, and Hugh Woodin.




MATH 221 FIRST Semester Calculus


Book Description

MATH 221 FIRST Semester CalculusBy Sigurd Angenent




The Calculus of Variations


Book Description

Suitable for advanced undergraduate and graduate students of mathematics, physics, or engineering, this introduction to the calculus of variations focuses on variational problems involving one independent variable. It also discusses more advanced topics such as the inverse problem, eigenvalue problems, and Noether’s theorem. The text includes numerous examples along with problems to help students consolidate the material.




University Calculus


Book Description

Calculus hasn't changed, but your students have. Many of today's students have seen calculus before at the high school level. However, professors report nationwide that students come into their calculus courses with weak backgrounds in algebra and trigonometry, two areas of knowledge vital to the mastery of calculus. University Calculus: Alternate Edition responds to the needs of today's students by developing their conceptual understanding while maintaining a rigor appropriate to the calculus course. The Alternate Edition is the perfect alternative for instructors who want the same quality and quantity of exercises as Thomas' Calculus, Media Upgrade, Eleventh Edition but prefer a faster-paced presentation. University Calculus: Alternate Edition is now available with an enhanced MyMathLab(t) course-the ultimate homework, tutorial and study solution for today's students. The enhanced MyMathLab(t) course includes a rich and flexible set of course materials and features innovative Java(t) Applets, Group Projects, and new MathXL(R) exercises. This text is also available with WebAssign(R) and WeBWorK(R).