Lectures on Singular Integral Operators


Book Description

This book represents an expanded account of lectures delivered at the NSF-CBMS Regional Conference on Singular Integral Operators, held at the University of Montana in the summer of 1989. The lectures are concerned principally with developments in the subject related to the Cauchy integral on Lipschitz curves and the T(1) theorem. The emphasis is on real-variable techniques, with a discussion of analytic capacity in one complex variable included as an application. The author has presented here a synthesized exposition of a body of results and techniques. Much of the book is introductory in character and intended to be accessible to the nonexpert, but a variety of readers should find the book useful.




Lectures on Pseudo-Differential Operators


Book Description

The theory of pseudo-differential operators (which originated as singular integral operators) was largely influenced by its application to function theory in one complex variable and regularity properties of solutions of elliptic partial differential equations. Given here is an exposition of some new classes of pseudo-differential operators relevant to several complex variables and certain non-elliptic problems. Originally published in 1979. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.




Lectures on Operator Theory and Its Applications


Book Description

Much of the importance of mathematics lies in its ability to provide theories which are useful in widely different fields of endeavour. A good example is the large and amorphous body of knowledge known as the theory of linear operators or operator theory, which came to life about a century ago as a theory to encompass properties common to matrix, differential, and integral operators. Thus, it is a primary purpose of operator theory to provide a coherent body of knowledge which can explain phenomena common to the enormous variety of problems in which such linear operators play a part. The theory is a vital part of functional analysis, whose methods and techniques are one of the major advances of twentieth century mathematics and now play a pervasive role in the modeling of phenomena in probability, imaging, signal processing, systems theory, etc, as well as in the more traditional areas of theoretical physics and mechanics. This book is based on lectures presented at a meeting on operator theory and its applications held at the Fields Institute in 1994.




Lectures on Hyponormal Operators


Book Description

The present lectures are based on a course deli vered by the authors at the Uni versi ty of Bucharest, in the winter semester 1985-1986. Without aiming at completeness, the topics selected cover all the major questions concerning hyponormal operators. Our main purpose is to provide the reader with a straightforward access to an active field of research which is strongly related to the spectral and perturbation theories of Hilbert space operators, singular integral equations and scattering theory. We have in view an audience composed especially of experts in operator theory or integral equations, mathematical physicists and graduate students. The book is intended as a reference for the basic results on hyponormal operators, but has the structure of a textbook. Parts of it can also be used as a second year graduate course. As prerequisites the reader is supposed to be acquainted with the basic principles of functional analysis and operator theory as covered for instance by Reed and Simon [1]. A t several stages of preparation of the manuscript we were pleased to benefit from proper comments made by our cOlleagues: Grigore Arsene, Tiberiu Constantinescu, Raul Curto, Jan Janas, Bebe Prunaru, Florin Radulescu, Khrysztof Rudol, Konrad Schmudgen, Florian-Horia Vasilescu. We warmly thank them all. We are indebted to Professor Israel Gohberg, the editor of this series, for his constant encouragement and his valuable mathematical advice. We wish to thank Mr. Benno Zimmermann, the Mathematics Editor at Birkhauser Verlag, for cooperation and assistance during the preparation of the manuscript.




Singular Integrals


Book Description




Singular Integral Operators


Book Description

The present edition differs from the original German one mainly in the following addi tional material: weighted norm inequalities for maximal functions and singular opera tors (§ 12, Chap. XI), polysingular integral operators and pseudo-differential operators (§§ 7, 8, Chap. XII), and spline approximation methods for solving singular integral equations (§ 4, Chap. XVII). Furthermore, we added two subsections on polynomial approximation methods for singular integral equations over an interval or with dis continuous coefficients (Nos. 3.6 and 3.7, Chap. XVII). In many places we incorporated new results which, in the vast majority, are from the last five years after publishing the German edition (note that the references are enlarged by about 150 new titles). S. G. Mikhlin wrote §§ 7, 8, Chap. XII, and the other additions were drawn up by S. Prossdorf. We wish to express our deepest gratitude to Dr. A. Bottcher and Dr. R. Lehmann who together translated the text into English carefully and with remarkable expertise.




Lectures on Integral Equations


Book Description

This concise and classic volume presents the main results of integral equation theory as consequences of the theory of operators on Banach and Hilbert spaces. In addition, it offers a brief account of Fredholm's original approach. The self-contained treatment requires only some familiarity with elementary real variable theory, including the elements of Lebesgue integration, and is suitable for advanced undergraduates and graduate students of mathematics. Other material discusses applications to second order linear differential equations, and a final chapter uses Fourier integral techniques to investigate certain singular integral equations of interest for physical applications as well as for their own sake. A helpful index concludes the text.




Pseudodifferential and Singular Integral Operators


Book Description

This textbook provides a self-contained and elementary introduction to the modern theory of pseudodifferential operators and their applications to partial differential equations. In the first chapters, the necessary material on Fourier transformation and distribution theory is presented. Subsequently the basic calculus of pseudodifferential operators on the n-dimensional Euclidean space is developed. In order to present the deep results on regularity questions for partial differential equations, an introduction to the theory of singular integral operators is given - which is of interest for its own. Moreover, to get a wide range of applications, one chapter is devoted to the modern theory of Besov and Bessel potential spaces. In order to demonstrate some fundamental approaches and the power of the theory, several applications to wellposedness and regularity question for elliptic and parabolic equations are presented throughout the book. The basic notation of functional analysis needed in the book is introduced and summarized in the appendix. The text is comprehensible for students of mathematics and physics with a basic education in analysis.




Singular Integrals


Book Description




Tight Closure and Its Applications


Book Description

This monograph deals with the theory of tight closure and its applications. The contents are based on ten talks given at a CBMS conference held at North Dakota State University in June 1995.