Lectures on Topological Fluid Mechanics


Book Description

This volume contains a wide-ranging collection of valuable research papers written by some of the most eminent experts in the field. Topics range from fundamental aspects of mathematical fluid mechanics to DNA tangles and knotted DNAs in sedimentation.




Six Lectures on Dynamical Systems


Book Description

This volume consists of six articles covering different facets of the mathematical theory of dynamical systems. The topics range from topological foundations through invariant manifolds, decoupling, perturbations and computations to control theory. All contributions are based on a sound mathematical analysis. Some of them provide detailed proofs while others are of a survey character. In any case, emphasis is put on motivation and guiding ideas. Many examples are included.The papers of this volume grew out of a tutorial workshop for graduate students in mathematics held at the University of Augsburg. Each of the contributions is self-contained and provides an in-depth insight into some topic of current interest in the mathematical theory of dynamical systems. The text is suitable for courses and seminars on a graduate student level.




Lectures on Dynamical Systems, Structural Stability, and Their Applications


Book Description

The communication of knowledge on nonlinear dynamical systems, between the mathematicians working on the analytic approach and the scientists working mostly on the applications and numerical simulations has been less than ideal. This volume hopes to bridge the gap between books written on the subject by mathematicians and those written by scientists. The second objective of this volume is to draw attention to the need for cross-fertilization of knowledge between the physical and biological scientists. The third aim is to provide the reader with a personal guide on the study of global nonlinear dynamical systems.




Lectures on Topological Dynamics


Book Description




Lectures on Field Theory and Topology


Book Description

These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.




Geometric Theory of Dynamical Systems


Book Description

... cette etude qualitative (des equations difj'erentielles) aura par elle-m me un inter t du premier ordre ... HENRI POINCARE, 1881. We present in this book a view of the Geometric Theory of Dynamical Systems, which is introductory and yet gives the reader an understanding of some of the basic ideas involved in two important topics: structural stability and genericity. This theory has been considered by many mathematicians starting with Poincare, Liapunov and Birkhoff. In recent years some of its general aims were established and it experienced considerable development. More than two decades passed between two important events: the work of Andronov and Pontryagin (1937) introducing the basic concept of structural stability and the articles of Peixoto (1958-1962) proving the density of stable vector fields on surfaces. It was then that Smale enriched the theory substantially by defining as a main objective the search for generic and stable properties and by obtaining results and proposing problems of great relevance in this context. In this same period Hartman and Grobman showed that local stability is a generic property. Soon after this Kupka and Smale successfully attacked the problem for periodic orbits. We intend to give the reader the flavour of this theory by means of many examples and by the systematic proof of the Hartman-Grobman and the Stable Manifold Theorems (Chapter 2), the Kupka-Smale Theorem (Chapter 3) and Peixoto's Theorem (Chapter 4). Several ofthe proofs we give vii Introduction Vlll are simpler than the original ones and are open to important generalizations.




Topological Aspects of the Dynamics of Fluids and Plasmas


Book Description

This volume contains papers arising out of the program of the Institute for Theoretical Physics (ITP) of the University of California at Santa Bar bara, August-December 1991, on the subject "Topological Fluid Dynamics". The first group of papers cover the lectures on Knot Theory, Relaxation un der Topological Constraints, Kinematics of Stretching, and Fast Dynamo Theory presented at the initial Pedagogical Workshop of the program. The remaining papers were presented at the subsequent NATO Advanced Re search Workshop or were written during the course of the program. We wish to acknowledge the support of the NATO Science Committee in making this workshop possible. The scope of "Topological Fluid Dynamics" was defined by an earlier Symposium of the International Union of Theoretical and Applied Mechan ics (IUTAM) held in Cambridge, England in August, 1989, the Proceedings of which were published (Eds. H.K. Moffatt and A. Tsinober) by Cambridge University Press in 1990. The proposal to hold an ITP program on this sub ject emerged from that Symposium, and we are grateful to John Greene and Charlie Kennel at whose encouragement the original proposal was formu lated. Topological fluid dynamics covers a range of problems, particularly those involving vortex tubes and/or magnetic flux tubes in nearly ideal fluids, for which topological structures can be identified and to some extent quantified.




Ergodic Theory and Topological Dynamics


Book Description

Ergodic Theory and Topological Dynamics







Recent Books