Leonid Isaakovich Mandelstam


Book Description

This biography of the famous Soviet physicist Leonid Isaakovich Mandelstam (1889-1944), who became a Professor at Moscow State University in 1925, describes his contributions to both physics and technology, as well as discussing the scientific community which formed around him, usually called the Mandelstam school. Mandelstam’s life story is thereby placed in its proper cultural context. The following more general issues are taken under consideration: the impact of German scientific culture on Russian science; the problems and fates of Russian intellectuals during the revolutionary and post-revolutionary years; the formation of the Soviet Academy of Sciences; and transformation of the system of higher education in the USSR during the 1920's and 1930's.The author shows that Mandelstam’s fundamental writings and his lectures notes allow to reconstruct his philosophy of science and his approach to the social and ethical functions of science and science education. That reconstruction is enhanced through extensive use of hitherto unpublished archival material as well as the transcripts of personal interviews conducted by the author.




L.I. Mandelstam and His School in Physics


Book Description

This biography of the famous Soviet physicist Leonid Isaakovich Mandelstam (1889–1944), who became a Professor at Moscow State University in 1925 and an Academician (the highest scientific title in the USSR) in 1929, describes his contributions to both physics and technology. It also discusses the scientific community that formed around him, commonly known as the Mandelstam School. By doing so, it places Mandelstam’s life story in its cultural context: the context of German University (until 1914), the First World War, the Civil War, and the development of the Socialist Revolution (until 1925) and the young socialist country. The book considers various general issues, such as the impact of German scientific culture on Russian science; the problems and fates of Russian intellectuals during the revolutionary and post-revolutionary years; the formation of the Soviet Academy of Science, the State Academy; and the transformation of the system of higher education in the USSR during the 1920s and 1930s. Further, it reconstructs Mandelstam’s philosophy of science and his approach to the social and ethical function of science and science education based on his fundamental writings and lecture notes. This reconstruction is enhanced by extensive use of previously unpublished archive material as well as the transcripts of personal interviews conducted by the author. The book also discusses the biographies of Mandelstam’s friends and collaborators: German mathematician and philosopher Richard von Mises, Soviet Communist Party official and philosopher B.M.Hessen, Russian specialist in radio engineering N.D.Papalexy, the specialists in non-linear dynamics A.A.Andronov, S.E. Chaikin, A.A.Vitt and the plasma physicist M.A.Leontovich. This second, extended edition reconstructs the social and economic backgrounds of Mandelstam and his colleagues, describing their positions at the universities and the institutes belonging to the Academy of Science. Additionally, Mandelstam’s philosophy of science is investigated in connection with the ideological attacks that occurred after Mandelstam’s death, particularly the great mathematician A.D.Alexandrov’s criticism of Mandelstam’s operationalism.




Physicists: Epoch And Personalities


Book Description

The book is a collection of memoirs on famous Soviet physicists of the 20th century, such as Tamm, Vavilov, Sakharov, Landau and others. The memoirs were originally written in Russian by E L Feinberg. The narrative is situated within a remarkably well-described historical, cultural and social context. Of special interest are the chapters devoted to Soviet and German atomic projects.




Brillouin Scattering Part 1


Book Description

Brillouin Scattering, Volume 109 in the Semiconductors and Semimetal series, marks the centenary of Leon Brillouin's seminal 1922 paper which provided a detailed theory of the effect that now bears his name. Stimulated Brillouin Scattering (SBS) is the strongest third order optical nonlinearity and plays an important role in contemporary science and applications, particularly lasers, communications, and fibre optics, as well as playing a new role in experimental physics and the life sciences. This volume provides a foundational perspective on Brillouin scattering, starting with a historical review of Brillouin scattering, the theory of SBS and the convergence between SBS and Optomechanics. We then consider SBS in several different waveguide geometries, including photonic crystal fibres, integrated optics and superfluids. - From the leading researchers in the field - Historical, theoretical, and scientific perspective - Pedagogical




The Probability Interpretation and the Statistical Transformation Theory, the Physical Interpretation, and the Empirical and Mathematical Foundations of Quantum Mechanics 1926–1932


Book Description

Quantum Theory, together with the principles of special and general relativity, constitute a scientific revolution that has profoundly influenced the way in which we think about the universe and the fundamental forces that govern it. The Historical Development of Quantum Theory is a definitive historical study of that scientific work and the human struggles that accompanied it from the beginning. Drawing upon such materials as the resources of the Archives for the History of Quantum Physics, the Niels Bohr Archives, and the archives and scientific correspondence of the principal quantum physicists, as well as Jagdish Mehra's personal discussions over many years with most of the architects of quantum theory, the authors have written a rigorous scientific history of quantum theory in a deeply human context. This multivolume work presents a rich account of an intellectual triumph: a unique analysis of the creative scientific process. The Historical Development of Quantum Theory is science, history, and biography, all wrapped in the story of a great human enterprise. Its lessons will be an aid to those working in the sciences and humanities alike.




Mesoscopic Thermodynamics for Scientists and Engineers


Book Description

Provides comprehensive coverage of the fundamentals of mesoscopic thermodynamics Mesoscopic Thermodynamics for Scientists and Engineers presents a unified conceptual approach to the core principles of equilibrium and nonequilibrium thermodynamics. Emphasizing the concept of universality at the mesoscale, this authoritative textbook provides the knowledge required for understanding and utilizing mesoscopic phenomena in a wide range of new and emerging technologies. Divided into two parts, Mesoscopic Thermodynamics for Scientists and Engineers opens with a concise summary of classical thermodynamics and nonequilibrium thermodynamics, followed by a detailed description of fluctuations and local (spatially-dependent) properties. Part II presents a universal approach to specific meso-heterogeneous systems, illustrated by numerous examples from experimental and computational studies that align with contemporary research and engineering practice. Bridges the gap between conventional courses in thermodynamics and real-world practice Provides in-depth instruction on applying thermodynamics to current problems involving meso- and nano-heterogeneous systems Contains a wealth of examples of simple and complex fluids, polymers, liquid crystals, and supramolecular equilibrium and dissipative structures Includes practical exercises and references to textbooks, monographs, and journal articles in each chapter Mesoscopic Thermodynamics for Scientists and Engineers is an excellent textbook for advanced undergraduate and graduate students in physics, chemistry, and chemical, mechanical, and materials science engineering, as well as an invaluable reference for engineers and researchers engaged in soft-condensed matter physics and chemistry, nanoscience and nanotechnology, and mechanical, chemical, and biomolecular engineering.




The Making of Modern Physics in Colonial India


Book Description

This monograph offers a cultural history of the development of physics in India during the first half of the twentieth century, focusing on Indian physicists Satyendranath Bose (1894-1974), Chandrasekhara Venkata Raman (1888-1970) and Meghnad Saha (1893-1956). The analytical category "bhadralok physics" is introduced to explore how it became possible for a highly successful brand of modern science to develop in a country that was still under colonial domination. The term Bhadralok refers to the then emerging group of native intelligentsia, who were identified by academic pursuits and manners. Exploring the forms of life of this social group allows a better understanding of the specific character of Indian modernity that, as exemplified by the work of bhadralok physicists, combined modern science with indigenous knowledge in an original program of scientific research. The three scientists achieved the most significant scientific successes in the new revolutionary field of quantum physics, with such internationally recognized accomplishments as the Saha ionization equation (1921), the famous Bose-Einstein statistics (1924), and the Raman Effect (1928), the latter discovery having led to the first ever Nobel Prize awarded to a scientist from Asia. This book analyzes the responses by Indian scientists to the radical concept of the light quantum, and their further development of this approach outside the purview of European authorities. The outlook of bhadralok physicists is characterized here as "cosmopolitan nationalism," which allows us to analyze how the group pursued modern science in conjunction with, and as an instrument of Indian national liberation.




History of Wireless


Book Description

Important new insights into how various components and systems evolved Premised on the idea that one cannot know a science without knowing its history, History of Wireless offers a lively new treatment that introduces previously unacknowledged pioneers and developments, setting a new standard for understanding the evolution of this important technology. Starting with the background-magnetism, electricity, light, and Maxwell's Electromagnetic Theory-this book offers new insights into the initial theory and experimental exploration of wireless. In addition to the well-known contributions of Maxwell, Hertz, and Marconi, it examines work done by Heaviside, Tesla, and passionate amateurs such as the Kentucky melon farmer Nathan Stubblefield and the unsung hero Antonio Meucci. Looking at the story from mathematical, physics, technical, and other perspectives, the clearly written text describes the development of wireless within a vivid scientific milieu. History of Wireless also goes into other key areas, including: The work of J. C. Bose and J. A. Fleming German, Japanese, and Soviet contributions to physics and applications of electromagnetic oscillations and waves Wireless telegraphic and telephonic development and attempts to achieve transatlantic wireless communications Wireless telegraphy in South Africa in the early twentieth century Antenna development in Japan: past and present Soviet quasi-optics at near-mm and sub-mm wavelengths The evolution of electromagnetic waveguides The history of phased array antennas Augmenting the typical, Marconi-centered approach, History of Wireless fills in the conventionally accepted story with attention to more specific, less-known discoveries and individuals, and challenges traditional assumptions about the origins and growth of wireless. This allows for a more comprehensive understanding of how various components and systems evolved. Written in a clear tone with a broad scientific audience in mind, this exciting and thorough treatment is sure to become a classic in the field.




Raman Spectroscopy, Volume I


Book Description

The book provides an up-to-date overview of the fast growing area of Raman spectroscopy. The two-volume work describes how analytic methods using Raman spectroscopy allow for the chemical analysis of materials, providing even spatial resolution without precedent. In addition, external perturbations (strain, temperature, pressure) on molecules and their alignment can be analyzed. Raman spectroscopy can also provide information about the interactions of components, again at a high level of spatial resolution. In the form of tip-enhanced Raman spectroscopy (TERS), the method is a valuable tool for nanotechnology. This book is intended for researchers or lecturers in chemistry and materials science, who are interested in the composition and properties of their samples. It describes how Raman spectroscopy will enable them to examine thin layers, surfaces, and interfaces and improve their knowledge about the properties of composites. In addition, it can serve as a short introduction to vibrational spectroscopy.




Sir Rudolf Peierls


Book Description

Noncommutative differential geometry is a novel approach to geometry that is paving the way for exciting new directions in the development of mathematics and physics. The contributions in this volume are based on papers presented at a workshop dedicated to enhancing international cooperation between mathematicians and physicists in various aspects of frontier research on noncommutative differential geometry. The active contributors present both the latest results and comprehensive reviews of topics in the area. The book is accessible to researchers and graduate students interested in a variety of mathematical areas related to noncommutative geometry and its interface with modern theoretical physics.