Dam and Levee Safety and Community Resilience


Book Description

Although advances in engineering can reduce the risk of dam and levee failure, some failures will still occur. Such events cause impacts on social and physical infrastructure that extend far beyond the flood zone. Broadening dam and levee safety programs to consider community- and regional-level priorities in decision making can help reduce the risk of, and increase community resilience to, potential dam and levee failures. Collaboration between dam and levee safety professionals at all levels, persons and property owners at direct risk, members of the wider economy, and the social and environmental networks in a community would allow all stakeholders to understand risks, shared needs, and opportunities, and make more informed decisions related to dam and levee infrastructure and community resilience. Dam and Levee Safety and Community Resilience: A Vision for Future Practice explains that fundamental shifts in safety culture will be necessary to integrate the concepts of resilience into dam and levee safety programs.




Floods, Dams, and Levees


Book Description

Learn How Dams And Levees Are Built As Well As The Effects They Have On River Systems In A Region, And Places Downstream.




Erosion in Geomechanics Applied to Dams and Levees


Book Description

Erosion is the most common cause of failures at earth-dams, dikes and levees, whether through overtopping and overflowing, or internal erosion and piping. This book is dedicated to the phenomenon of internal erosion and piping. It is not intended to be exhaustive on the subject, but brings together some of the latest international research and advances. Emphasis is placed on physical processes, how they can be studied in the laboratory, and how test results can be applied to levees and dams. The results from several research projects in Australia, France, the Netherlands and the United States are covered by the authors. Our aim has been to share our most recent findings with students, researchers and practitioners. Understanding the failure of an earth-dam or a levee by erosion in a unified framework, whether internal erosion or surface erosion, requires continuous research in this field. We hope that the reader will gain knowledge from this book that leads to further progress in the challenging field of the safety of levees and dams. Contents 1. State of The Art on the Likelihood of Internal Erosion of Dams and Levees by Means of Testing, Robin Fell and Jean-Jacques Fry. 2. Contact Erosion, Pierre Philippe, Rémi Beguin and Yves-Henri Faure. 3. Backward Erosion Piping, Vera Van Beek, Adam Bezuijen and Hans Sellmeijer. 4. Concentrated Leak Erosion, Stéphane Bonelli, Robin Fell and Nadia Benahmed. 5. Relationship between the Erosion Properties of Soils and Other Parameters, Robin Fell, Gregory Hanson, Gontran Herrier, Didier Marot and Tony Wahl. About the Authors Stéphane Bonelli is a Research Professor at Irstea (French Environmental Sciences and Technologies Research Institute) in Aix-en-Provence, France. He has over 20 years of teaching and research experience, and has been a member of the ICOLD (International Commission on Large Dams) European Working Group on Internal Erosion since 2005. He has participated in 19 large dam reviews in France (visual inspection, monitoring data analysis and numerical modeling). His current activities include research, teaching and consultancy, focusing on soil erosion and the processes of levee breach.




Levees and Dams


Book Description

This book aims to inform policy-makers, engineers and earth scientists about the current and emerging role of geophysics in addressing environmental processes, assessments, and policy directions related to new and existing dams and levees. Until now geophysics has concentrated on characterization and remediation of dams and levees, but now the field is changing our understanding on the influence of natural processes (e.g., floods, dissolution) and human activities in the design, and management of these structures. This monograph includes advances in the following fields of Dams and Levees studies: · New insights from small and mid-sized laboratory experiments· Integrated methods electromagnetic, seismic, potential methods· Inverse modeling approaches· Statistical considerations· Monitoring of processes attending aging structures · Hazard monitoring· Risk Analysis




Design and Construction of Levees


Book Description

The purpose of this manual is to present basic principles used in the design and construction of earth levees. The term levee as used herein is defined as an embankment whose primary purpose is to furnish flood protection from seasonal high water and which is therefore subject to water loading for periods of only a few days or weeks a year. Embankments that are subject to water loading for prolonged periods (longer than normal flood protection requirements) or permanently should be designed in accordance with earth dam criteria rather than the levee criteria given herein. Even though levees are similar to small earth dams they differ from earth dams in the following important respects: (a) a levee embankment may become saturated for only a short period of time beyond the limit of capillary saturation, (b) levee alignment is dictated primarily by flood protection requirements, which often results in construction on poor foundations, and (c) borrow is generally obtained from shallow pits or from channels excavated adjacent to the levee, which produce fill material that is often heterogeneous and far from ideal. Selection of the levee section is often based on the properties of the poorest material that must be used.




Dam Politics


Book Description

The politics of building dams and levees and other structures are just part of the policies determining how American rivers are managed or mismanaged. America's well-being depends upon the health of those rivers and important decisions go beyond just dam-building or dam removal. American rivers are suffering from poor water quality, altered flows, and diminished natural habitat. Current efforts by policymakers to change the ways American rivers are managed range from the removal of dams to the simulation of seasonal flows to the restoration of habitat, all with varying degrees of success. Efforts to restore American rivers are clearly delineated by William Lowry in Dam Politics as he looks at how public policy and rivers interact, examines the physical differences in rivers that affect policies, and analyzes the political differences among the groups that use them. He argues that we are indeed moving into an era of restoration (defined in part as removing dams but also as restoring the water quality, seasonal flows, and natural habitat that existed before structural changes to the rivers), and seeks to understand the political circumstances that affect the degree of restoration. Lowry presents case studies of eight river restoration efforts, including dam removals on the Neuse and Kennebec rivers, simulation of seasonal flows on the Colorado river, and the failed attempt to restore salmon runs on the Snake river. He develops a typology of four different kinds of possible change--dependent on the parties involved and the physical complexity of the river--and then examines the cases using natural historical material along with dozens of interviews with key policymakers. Policy approaches such as conjunctive water management, adaptive management, alternative licensing processes, and water marketing are presented as possible ways of using our rivers more wisely. Dam Politics provides a useful and systematic account of how American waterways are managed and how current policies are changing. American rivers are literally the lifeblood of our nation. Lowry has written a lively and accessible book that makes it clear as a mountain stream that it matters deeply how those rivers are managed.




Hydraulics of Levee Overtopping


Book Description

Earthen levees are extensively used to protect the population and infrastructure from periodic floods and high water due to storm surges. The causes of failure of levees include overtopping, surface erosion, internal erosion, and slope instability. Overtopping may occur during periods of flooding due to insufficient freeboard. The most problematic situation involves the levee being overtopped by both surge and waves when the surge level exceeds the levee crest elevation with accompanying wave overtopping. Overtopping of levees produces fast-flowing, turbulent water velocities on the landward-side slope that can potentially damage the protective grass covering and expose the underlying soil to erosion. If overtopping continues long enough, the erosion may eventually result in loss of levee crest elevation and possibly breaching of the protective structure. Hence, protecting levees from erosion by surge overflow and wave overtopping is necessary to assure a viable and safe levee system. This book presents a cutting-edge approach to understanding overtopping hydraulics under negative free board of earthen levees, and to the study of levee reinforcing methods. Combining soil erosion test, full-scale laboratory overtopping hydraulics test, and numerical modeling for the turbulent overtopping hydraulics. It provides an analysis that integrates the mechanical and hydraulic processes governing levee overtopping occurrences and engineering approaches to reinforce overtopped levees. Topics covered: surge overflow, wave overtopping and their combination, full-scale hydraulic tests, erosion tests, overtopping hydraulics, overtopping discharge, and turbulent analysis. This is an invaluable resource for graduate students and researchers working on levee design, water resource engineering, hydraulic engineering, and coastal engineering, and for professionals in the field of civil and environmental engineering, and natural hazard analysis.




National Levee Safety and Dam Safety Programs


Book Description




Riverine Ecosystem Management


Book Description

This open access book surveys the frontier of scientific river research and provides examples to guide management towards a sustainable future of riverine ecosystems. Principal structures and functions of the biogeosphere of rivers are explained; key threats are identified, and effective solutions for restoration and mitigation are provided. Rivers are among the most threatened ecosystems of the world. They increasingly suffer from pollution, water abstraction, river channelisation and damming. Fundamental knowledge of ecosystem structure and function is necessary to understand how human acitivities interfere with natural processes and which interventions are feasible to rectify this. Modern water legislation strives for sustainable water resource management and protection of important habitats and species. However, decision makers would benefit from more profound understanding of ecosystem degradation processes and of innovative methodologies and tools for efficient mitigation and restoration. The book provides best-practice examples of sustainable river management from on-site studies, European-wide analyses and case studies from other parts of the world. This book will be of interest to researchers in the field of aquatic ecology, river system functioning, conservation and restoration, to postgraduate students, to institutions involved in water management, and to water related industries.




Dam Foundation Grouting


Book Description

Weaver investigates and critically reviews the most current grouting practices in the US and internationally. His presentation concentrates on practical issues, such as the factors affecting grouting effectiveness, design considerations, equipment, supervision and inspection of grouting, materials a