Lidar


Book Description

Written by leading experts in optical radar, or lidar, this book brings all the recent practices up-to-date. With a Foreword by one of the founding fathers in the area. Its broad cross-disciplinary scope should appeal to scientists ranging from the view of optical sciences to environmental engineers. Optical remote sensing has matured to become a lead method for cross-disciplinary research. This new multi-authored book reviews the state-of-the-art in a readable monograph.




LIDAR for Atmospheric Aerosol Detection


Book Description

LIDAR, otherwise known as Light Detection and Ranging, is an optical active remote sensing technique that has vast applications in numerous fields. Most impressively, LIDAR has been established as a capable tool for atmospheric studies due to its ability to probe atmospheric aerosols that are invisible to the naked eye. Although air quality monitoring stations perform admirably as atmospheric aerosol monitoring systems, the potential of LIDAR to surpass these conventional approaches in measuring air pollutant levels is evident due to its superior detection range and rapid range-resolved measurements. This monograph aims to provide an introduction to elastic backscatter LIDAR theory, design and signal processing, as well as present the reader with a review of the latest developments and applications of LIDAR in atmospheric aerosol detection. With this monograph, the authors hope to provide a stepping stone for new LIDAR researchers, students and scientific enthusiasts to begin investigating this ever expanding field of science and engineering, as well as bridge the discontinuity between textbooks and the latest advancements in LIDAR technology and experiments




Remote Sensing of Aerosols, Clouds, and Precipitation


Book Description

Remote Sensing of Aerosols, Clouds, and Precipitation compiles recent advances in aerosol, cloud, and precipitation remote sensing from new satellite observations. The book examines a wide range of measurements from microwave (both active and passive), visible, and infrared portions of the spectrum. Contributors are experts conducting state-of-the-art research in atmospheric remote sensing using space, airborne, and ground-based datasets, focusing on supporting earth observation satellite missions for aerosol, cloud, and precipitation studies. A handy reference for scientists working in remote sensing, earth science, electromagnetics, climate physics, and space engineering. Valuable for operational forecasters, meteorologists, geospatial experts, modelers, and policymakers alike. - Presents new approaches in the field, along with further research opportunities, based on the latest satellite data - Focuses on how remote sensing systems can be designed/developed to solve outstanding problems in earth and atmospheric sciences - Edited by a dynamic team of editors with a mixture of highly skilled and qualified authors offering world-leading expertise in the field




Inverse Problems of Lidar Sensing of the Atmosphere


Book Description

This monograph undertakes to present systematically the methods for solving inverse problems of lidar sensing of the atmosphere, with emphasis on lidar techniques that are based on the use of light scattering by aerosols. The theory of multi-frequency lidar sensing, as a new method for studying the microphysical and optical characteristics of aerosol formations, is also pre sented in detail. The possibilities of this theory are illustrated by the experimental results on microstructure analysis of tropospheric and low stratospheric aerosols obtained with ground-based two- and three-frequency lidars. The lidar facilities used in these experimental studies were construc ted at the Institute of Atmospheric Optics S8 USSR Academy of Sciences. Some aspects of remote control of dispersed air pollution using lidar systems are also considered. A rigorous theory for inverting the data of polarization lidar measure ments is discussed, along with its application to remote measurement of the complex index of refraction of aerosol substances and the microstructure pa rameters of background aerosols using double-ended lidar schemes. Solutions to such important problems as the separation of contributions due to Rayleigh molecular and Mie-aerosol light scattering into the total backscatter are ob tained by using this theory. Lidar polarization measurements are shown to be useful in this case. The efficiency of the methods suggested here for inter preting the lidar polarization measurements is illustrated by experimental results on the investigation of the microphysical parameters of natural aero sols and artificial smokes using polarization nephelometers.




Advances in Atmospheric Remote Sensing with Lidar


Book Description

Lidar or laser radar, the depth-resolved remote measurement of atmospheric parameters with optical means, has become an important tool in the field of atmospheric and environmental remote sensing. In this volume the latest progress in the development of Lidar methods, experiments, and applications is described. The content is based on selected and thoroughly refereed papers presented at the 18th International Laser Radar Conference, Berlin, 22 - 26 July 1996. The book is divided into six parts which cover the topics of tropospheric aerosols and clouds, Lidar in space, wind, water vapor, troposheric trace gases and plumes, and stratospheric and mesospheric profiling. As a supplement to fundamental LIDAR textbooks this volume may serve as a guide through the blossoming field of modern Lidar techniques.




Compact Efficient Lidar Receiver for Measuring Atmospheric Aerosols


Book Description

A small, light weight, and efficient aerosol lidar receiver was constructed and tested. Weight and space savings were realized by using rigid optic tubes and mounting cubes to package the steering optics and detectors in a compact assembly. The receiver had a 1064nm channel using an APD detector. The 532nm channel was split (90/10) into an analog channel (90%) and a photon counting channel (10%). The efficiency of the 1064nm channel with optical filter was 44.0%. The efficiency of the analog 532nm channel was 61.4% with the optical filter, and the efficiency of the 532nm photon counting channel was 7.6% with the optical filter. The results of the atmospheric tests show that the detectors were able to consistently return accurate results. The lidar receiver was able to detect distinct cloud layers, and the lidar returns also agreed across the different detectors. The use of a light weight fiber-coupled telescope reduced weight and allowed great latitude in detector assembly positioning due to the flexibility enabled by the use of fiber optics. The receiver is now ready to be deployed for aircraft or ground based aerosol lidar measurements. Gili, Christopher and De Young, Russell Langley Research Center NASA/TP-2006-213950, L-19206




Atmospheric Aerosols


Book Description

This textbook aims to be a one stop shop for those interested in aerosols and their impact on the climate system. It starts with some fundamentals on atmospheric aerosols, atmospheric radiation and cloud physics, then goes into techniques used for in-situ and remote sensing measurements of aerosols, data assimilation, and discusses aerosol-radiation interactions, aerosol-cloud interactions and the multiple impacts of aerosols on the climate system. The book aims to engage those interested in aerosols and their impacts on the climate system: graduate and PhD students, but also post-doctorate fellows who are new to the field or would like to broaden their knowledge. The book includes exercises at the end of most chapters. Atmospheric aerosols are small (microscopic) particles in suspension in the atmosphere, which play multiple roles in the climate system. They interact with the energy budget through scattering and absorption of solar and terrestrial radiation. They also serve as cloud condensation and ice nuclei with impacts on the formation, evolution and properties of clouds. Finally aerosols also interact with some biogeochemical cycles. Anthropogenic emissions of aerosols are responsible for a cooling effect that has masked part of the warming due to the increased greenhouse effect since pre-industrial time. Natural aerosols also respond to climate changes as shown by observations of past climates and modelling of the future climate.







High Resolution Active Optical Remote Sensing Observations of Aerosols, Clouds and Aerosol-Cloud Interactions and Their Implication to Climate


Book Description

Remote Sensing is of paramount importance for Earth Observation to monitor and analyze the Earth’s vital signs. In this Special Issue are reported the latest research results involving active optical remote sensing instruments, both from ground-based to satellite platforms, that are involved in analyzing the vertical and horizontal aerosol and cloud distribution, other than their geometrical, optical and microphysical properties. Those active optical remote sensing techniques are also very useful in determining pollutant dispersion and the dynamics inside the boundary layer. The published studies put in evidence the hidden mechanisms on how pollution from the source is advected transnationally in other countries and the interaction with local meteorology.




Laser Remote Sensing


Book Description

Information on recent progress in laser remote sensor (LIDAR) technology can be found scattered throughout numerous journal articles and conference proceedings, but until now there has been no work that summarizes recent advancements and achievements in the field in a detailed format. Laser Remote Sensing provides an up-to-date, comprehensiv