p-Adic Lie Groups


Book Description

Manifolds over complete nonarchimedean fields together with notions like tangent spaces and vector fields form a convenient geometric language to express the basic formalism of p-adic analysis. The volume starts with a self-contained and detailed introduction to this language. This includes the discussion of spaces of locally analytic functions as topological vector spaces, important for applications in representation theory. The author then sets up the analytic foundations of the theory of p-adic Lie groups and develops the relation between p-adic Lie groups and their Lie algebras. The second part of the book contains, for the first time in a textbook, a detailed exposition of Lazard's algebraic approach to compact p-adic Lie groups, via his notion of a p-valuation, together with its application to the structure of completed group rings.




Hilbert's Fifth Problem and Related Topics


Book Description

In the fifth of his famous list of 23 problems, Hilbert asked if every topological group which was locally Euclidean was in fact a Lie group. Through the work of Gleason, Montgomery-Zippin, Yamabe, and others, this question was solved affirmatively; more generally, a satisfactory description of the (mesoscopic) structure of locally compact groups was established. Subsequently, this structure theory was used to prove Gromov's theorem on groups of polynomial growth, and more recently in the work of Hrushovski, Breuillard, Green, and the author on the structure of approximate groups. In this graduate text, all of this material is presented in a unified manner, starting with the analytic structural theory of real Lie groups and Lie algebras (emphasising the role of one-parameter groups and the Baker-Campbell-Hausdorff formula), then presenting a proof of the Gleason-Yamabe structure theorem for locally compact groups (emphasising the role of Gleason metrics), from which the solution to Hilbert's fifth problem follows as a corollary. After reviewing some model-theoretic preliminaries (most notably the theory of ultraproducts), the combinatorial applications of the Gleason-Yamabe theorem to approximate groups and groups of polynomial growth are then given. A large number of relevant exercises and other supplementary material are also provided.




Periodic Locally Compact Groups


Book Description

This authoritative book on periodic locally compact groups is divided into three parts: The first part covers the necessary background material on locally compact groups including the Chabauty topology on the space of closed subgroups of a locally compact group, its Sylow theory, and the introduction, classifi cation and use of inductively monothetic groups. The second part develops a general structure theory of locally compact near abelian groups, pointing out some of its connections with number theory and graph theory and illustrating it by a large exhibit of examples. Finally, the third part uses this theory for a complete, enlarged and novel presentation of Mukhin’s pioneering work generalizing to locally compact groups Iwasawa’s early investigations of the lattice of subgroups of abstract groups. Contents Part I: Background information on locally compact groups Locally compact spaces and groups Periodic locally compact groups and their Sylow theory Abelian periodic groups Scalar automorphisms and the mastergraph Inductively monothetic groups Part II: Near abelian groups The definition of near abelian groups Important consequences of the definitions Trivial near abelian groups The class of near abelian groups The Sylow structure of periodic nontrivial near abelian groups and their prime graphs A list of examples Part III: Applications Classifying topologically quasihamiltonian groups Locally compact groups with a modular subgroup lattice Strongly topologically quasihamiltonian groups




An Introduction to Lie Groups and Lie Algebras


Book Description

This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.







The Structure of Compact Groups


Book Description

The subject matter of compact groups is frequently cited in fields like algebra, topology, functional analysis, and theoretical physics. This book serves the dual purpose of providing a textbook on it for upper level graduate courses or seminars, and of serving as a source book for research specialists who need to apply the structure and representation theory of compact groups. After a gentle introduction to compact groups and their representation theory, the book presents self-contained courses on linear Lie groups, on compact Lie groups, and on locally compact abelian groups. Separate appended chapters contain the material for courses on abelian groups and on category theory. However, the thrust of the book points in the direction of the structure theory of not necessarily finite dimensional, nor necessarily commutative, compact groups, unfettered by weight restrictions or dimensional bounds. In the process it utilizes infinite dimensional Lie algebras and the exponential function of arbitrary compact groups. The first edition of 1998 and the second edition of 2006 were well received by reviewers and have been frequently quoted in the areas of instruction and research. For the present new edition the text has been cleaned of typographical flaws and the content has been conceptually sharpened in some places and polished and improved in others. New material has been added to various sections taking into account the progress of research on compact groups both by the authors and other writers. Motivation was provided, among other things, by questions about the structure of compact groups put to the authors by readers through the years following the earlier editions. Accordingly, the authors wished to clarify some aspects of the book which they felt needed improvement. The list of references has increased as the authors included recent publications pertinent to the content of the book.




Proceedings of Groups - St. Andrews 1985


Book Description

A current picture of progress and research in group theory is provided by five leading group theorists Bachmuth, Baumslag, Neumann, Roseblade and Tits.




Topological Groups


Book Description

Following the tremendous reception of our first volume on topological groups called "Topological Groups: Yesterday, Today, and Tomorrow", we now present our second volume. Like the first volume, this collection contains articles by some of the best scholars in the world on topological groups. A feature of the first volume was surveys, and we continue that tradition in this volume with three new surveys. These surveys are of interest not only to the expert but also to those who are less experienced. Particularly exciting to active researchers, especially young researchers, is the inclusion of over three dozen open questions. This volume consists of 11 papers containing many new and interesting results and examples across the spectrum of topological group theory and related topics. Well-known researchers who contributed to this volume include Taras Banakh, Michael Megrelishvili, Sidney A. Morris, Saharon Shelah, George A. Willis, O'lga V. Sipacheva, and Stephen Wagner.




Groups St Andrews 2001 in Oxford: Volume 2


Book Description

This second volume of the two-volume book contains selected papers from the conference 'Groups St Andrews 2001 in Oxford'. The articles are contributed by a number of leading researchers and cover a wide spectrum of modern group theory. There are articles based on lecture courses given by five main speakers together with refereed survey and research articles. The 'Groups St Andrews' proceedings volumes are a snapshot of the state of the art in group theory and they often play an important role in future developments in the subject.




Induced Representations of Locally Compact Groups


Book Description

A comprehensive presentation of the theories of induced representations and Mackey analysis applied to a wide variety of groups.