Lie Groups, Their Discrete Subgroups, and Invariant Theory


Book Description

For the past thirty years, E B Vinberg and L A Onishchik have conducted a seminar on Lie groups at Moscow University; about five years ago V L Popov became the third co-director, and the range of topics expanded to include invariant theory. Today, the seminar encompasses such areas as algebraic groups, geometry and topology of homogeneous spaces, and Kac-Moody groups and algebras. This collection presents a snapshot of the research activities of this well-established seminar, including new results in Lie groups, crystallographic groups, and algebraic transformation groups. These papers will not be published elsewhere. Readers will find this volume useful for the new results it contains as well as for the open problems it poses.




Lie Groups, Their Discrete Subgroups, and Invariant Theory


Book Description

For the past thirty years, E B Vinberg and L A Onishchik have conducted a seminar on Lie groups at Moscow University; about five years ago V L Popov became the third co-director, and the range of topics expanded to include invariant theory. Today, the seminar encompasses such areas as algebraic groups, geometry and topology of homogeneous spaces, and Kac-Moody groups and algebras. This collection presents a snapshot of the research activities of this well-established seminar, including new results in Lie groups, crystallographic groups, and algebraic transformation groups. These papers will not be published elsewhere. Readers will find this volume useful for the new results it contains as well as for the open problems it poses.







Discrete Subgroups of Semisimple Lie Groups


Book Description

Discrete subgroups have played a central role throughout the development of numerous mathematical disciplines. Discontinuous group actions and the study of fundamental regions are of utmost importance to modern geometry. Flows and dynamical systems on homogeneous spaces have found a wide range of applications, and of course number theory without discrete groups is unthinkable. This book, written by a master of the subject, is primarily devoted to discrete subgroups of finite covolume in semi-simple Lie groups. Since the notion of "Lie group" is sufficiently general, the author not only proves results in the classical geometry setting, but also obtains theorems of an algebraic nature, e.g. classification results on abstract homomorphisms of semi-simple algebraic groups over global fields. The treatise of course contains a presentation of the author's fundamental rigidity and arithmeticity theorems. The work in this monograph requires the language and basic results from fields such as algebraic groups, ergodic theory, the theory of unitary representatons, and the theory of amenable groups. The author develops the necessary material from these subjects; so that, while the book is of obvious importance for researchers working in related areas, it is essentially self-contained and therefore is also of great interest for advanced students.




Lie Groups and Invariant Theory


Book Description

This volume, devoted to the 70th birthday of A. L. Onishchik, contains a collection of articles by participants in the Moscow Seminar on Lie Groups and Invariant Theory headed by E. B. Vinberg and A. L. Onishchik. The book is suitable for graduate students and researchers interested in Lie groups and related topics.




Discrete Subgroups of Lie Groups


Book Description

This book originated from a course of lectures given at Yale University during 1968-69 and a more elaborate one, the next year, at the Tata Institute of Fundamental Research. Its aim is to present a detailed ac count of some of the recent work on the geometric aspects of the theory of discrete subgroups of Lie groups. Our interest, by and large, is in a special class of discrete subgroups of Lie groups, viz., lattices (by a lattice in a locally compact group G, we mean a discrete subgroup H such that the homogeneous space GJ H carries a finite G-invariant measure). It is assumed that the reader has considerable familiarity with Lie groups and algebraic groups. However most of the results used frequently in the book are summarised in "Preliminaries"; this chapter, it is hoped, will be useful as a reference. We now briefly outline the contents of the book. Chapter I deals with results of a general nature on lattices in locally compact groups. The second chapter is an account of the fairly complete study of lattices in nilpotent Lie groups carried out by Ma1cev. Chapters III and IV are devoted to lattices in solvable Lie groups; most of the theorems here are due to Mostow. In Chapter V we prove a density theorem due to Borel: this is the first important result on lattices in semisimple Lie groups.




Discrete Subgroups of Lie Groups


Book Description

This book originated from a course of lectures given at Yale University during 1968-69 and a more elaborate one, the next year, at the Tata Institute of Fundamental Research. Its aim is to present a detailed ac count of some of the recent work on the geometric aspects of the theory of discrete subgroups of Lie groups. Our interest, by and large, is in a special class of discrete subgroups of Lie groups, viz., lattices (by a lattice in a locally compact group G, we mean a discrete subgroup H such that the homogeneous space GJ H carries a finite G-invariant measure). It is assumed that the reader has considerable familiarity with Lie groups and algebraic groups. However most of the results used frequently in the book are summarised in "Preliminaries"; this chapter, it is hoped, will be useful as a reference. We now briefly outline the contents of the book. Chapter I deals with results of a general nature on lattices in locally compact groups. The second chapter is an account of the fairly complete study of lattices in nilpotent Lie groups carried out by Ma1cev. Chapters III and IV are devoted to lattices in solvable Lie groups; most of the theorems here are due to Mostow. In Chapter V we prove a density theorem due to Borel: this is the first important result on lattices in semisimple Lie groups.




Lie Groups, Lie Algebras, and Some of Their Applications


Book Description

This text introduces upper-level undergraduates to Lie group theory and physical applications. It further illustrates Lie group theory's role in several fields of physics. 1974 edition. Includes 75 figures and 17 tables, exercises and problems.




Essays in the History of Lie Groups and Algebraic Groups


Book Description

Algebraic groups and Lie groups are important in most major areas of mathematics, occuring in diverse roles such as the symmetries of differential equations and as central figures in the Langlands program for number theory. In this book, Professor Borel looks at the development of the theory of Lie groups and algebraic groups, highlighting the evolution from the almost purely local theory at the start to the global theory that we know today. As the starting point of this passagefrom local to global, the author takes Lie's theory of local analytic transformation groups and Lie algebras. He then follows the globalization of the process in its two most important frameworks: (transcendental) differential geometry and algebraic geometry. Chapters II to IV are devoted to the former,Chapters V to VIII, to the latter.The essays in the first part of the book survey various proofs of the full reducibility of linear representations of $SL 2M$, the contributions H. Weyl to representation and invariant theory for Lie groups, and conclude with a chapter on E. Cartan's theory of symmetric spaces and Lie groups in the large.The second part of the book starts with Chapter V describing the development of the theory of linear algebraic groups in the 19th century. Many of the main contributions here are due to E. Study, E. Cartan, and above all, to L. Maurer. After being abandoned for nearly 50 years, the theory was revived by Chevalley and Kolchin and then further developed by many others. This is the focus of Chapter VI. The book concludes with two chapters on various aspects of the works of Chevalley on Lie groupsand algebraic groups and Kolchin on algebraic groups and the Galois theory of differential fields.The author brings a unique perspective to this study. As an important developer of some of the modern elements of both the differential geometric and the algebraic geometric sides of the theory, he has a particularly deep appreciation of the underlying mathematics. His lifelong involvement and his historical research in the subject give him a special appreciation of the story of its development.




An Introduction to Lie Groups and Lie Algebras


Book Description

This book is an introduction to semisimple Lie algebras. It is concise and informal, with numerous exercises and examples.