Life at the Nanoscale


Book Description

Proceeding from basic fundamentals to applications, this volume provides a comprehensive overview of the use of AFM and related scanning probe microscopies for cell surface analysis. It covers all cell types, from viruses and protoplasts to bacteria and animal cells. It also discusses a range of advanced AFM modalities, including high-resolution imaging, nanoindentation measurements, recognition imaging, and single-molecule and single-cell force spectroscopy. The book covers methodologies for preparing and analyzing cells and membranes of all kinds and highlights recent examples to illustrate the power of AFM techniques in life sciences and nanomedicine.




Nano Comes to Life


Book Description

"Increasingly, scientists are gaining control over matter at the nanometer scale. Spearheaded by physical scientists operating at the interfaces of physics and biology (such as the author herself), advances in nanoscience and technology are transforming how we think about life and treat human health. This is due to a convergence of size. To do medicine, one must understand and be able to reach the nanoscale environment of healthy cells in tissues and organs, as well as other nano-sized building blocks that constitute a living organism, such as proteins and DNA. The ground-breaking advances being made at the frontiers of nanoscience and -technology, specifically in the areas of biology and medicine, are the subject of this short, popular-level book. Chapter 1 describes how nanotechnology and quantitative methods in biology are progressively being deployed to embrace life in all its multiscale, hierarchical intricacy and multiplicity. Chapters 2 through 4 review how bioinspired and biomimetic nanostructures and nanomachines are being created and integrated into strategies aimed at solving specific medical problems. In particular, Chapter 2 summarizes how scientists are seeking to build artificial nanostructures using both biological molecules and the organizational principles of biology. Chapter 3 gives an account of how nanotechnology is being used to develop drug-delivery strategies that specifically target cancer cells and tumors to improve the efficacy of current cancer chemotherapies. Chapter 4 reviews the science of one of the most potentially transformative scientific fields: tissue engineering. In a concluding chapter (Chapter 5), Contera reviews how nanotechnology, biology, and medicine will continue fusing with other sciences and technologies - incorporating more mathematical and computational modelling, as well as AI and robotics. Nanoscale devices will be used to learn biology; and biology will be used to inspire increasingly sophisticated "transmaterial" devices that mimic some of the characteristics of biology and incorporate new features that are not available in the biological world. The effects on human health and longevity will be profound. In a more personal epilogue, Contera describes the crossroads at which we find ourselves. Accessing our own biology evokes a mixture of possibility and dread. However, Contera maintains that we can create a positive transmaterial world for the benefit of humankind, and she describes ways in which scientists are proactively engaging with the public, politicians, industry, and entrepreneurs, as well as the media and the arts, to communicate the power and risks of new advances and to influence the ways in which new technologies will affect our future"--




Life at the Nanoscale


Book Description

This book provides a comprehensive overview of the use of atomic force microscopy (AFM) and related scanning probe microscopies for cell surface analysis, going from the basics to the applications side. It covers all cell types, going from viruses and protoplasts to bacteria and animal cells and to discuss a range of advanced AFM modalities, including high-resolution imaging, nanoindentation measurements, recognition imaging, and single-molecule and single-cell force spectroscopy. The book covers methodologies for preparing and analyzing cells and membranes of all kinds and highlights recent examples to illustrate the power of AFM techniques in life sciences and nanomedicine.




Soft Machines


Book Description

Enthusiasts look forward to a time when tiny machines reassemble matter and process information but is their vision realistic? 'Soft Machines' explains why the nanoworld is so different to the macro-world that we are all familar with and shows how it has more in common with biology than conventional engineering.




Life's Ratchet


Book Description

Life, Hoffman argues, emerges from the random motions of atoms filtered through the sophisticated structures of our evolved machinery. People are essentially giant assemblies of interacting nanoscale machines.




Nanoscale Photonic Imaging


Book Description

This open access book, edited and authored by a team of world-leading researchers, provides a broad overview of advanced photonic methods for nanoscale visualization, as well as describing a range of fascinating in-depth studies. Introductory chapters cover the most relevant physics and basic methods that young researchers need to master in order to work effectively in the field of nanoscale photonic imaging, from physical first principles, to instrumentation, to mathematical foundations of imaging and data analysis. Subsequent chapters demonstrate how these cutting edge methods are applied to a variety of systems, including complex fluids and biomolecular systems, for visualizing their structure and dynamics, in space and on timescales extending over many orders of magnitude down to the femtosecond range. Progress in nanoscale photonic imaging in Göttingen has been the sum total of more than a decade of work by a wide range of scientists and mathematicians across disciplines, working together in a vibrant collaboration of a kind rarely matched. This volume presents the highlights of their research achievements and serves as a record of the unique and remarkable constellation of contributors, as well as looking ahead at the future prospects in this field. It will serve not only as a useful reference for experienced researchers but also as a valuable point of entry for newcomers.




Nanotechnology and Nanomaterials in the Treatment of Life-threatening Diseases


Book Description

Nanotechnology and Nanomaterials in the Treatment of Life-threatening Diseases takes a scientific approach to nanotechnology and nanomaterials applications in medicine, while also explaining the core biological principles for an audience of biomedical engineers, materials scientists, pharmacologists, and medical diagnostic technicians. The book is structured by major disease groups, offering a practical, application-based focus for scientists, engineers, and clinicians alike. The spectrum of medical applications is explored, from diagnostics and imaging to drug delivery, monitoring, therapies, and disease prevention. It also focuses specifically on the synthesis of nanomaterials and their potential health risks (particularly toxicity). Nanomedicine — the application of nanomaterials and devices for addressing medical problems — has demonstrated great potential for enabling improved diagnosis, treatment, and monitoring of many serious illnesses, including cancer, cardiovascular and neurological disorders, HIV/AIDS, and diabetes, as well as many types of inflammatory and infectious diseases. - Gain an understanding of how nanotechnologies and nanomaterials can be deployed in the fight against the major life-threatening diseases: cancer, neurological disorders (including Alzheimer's and Parkinson's), cardiovascular diseases, and HIV/AIDS - Discover the latest developments in nanomedicine, from therapies and drug delivery to diagnostics and disease prevention - The authors cover the health risks of nanomaterials as well as their benefits, considering toxicity and potential carcinogens




No Small Matter


Book Description

A small revolution is remaking the world. The only problem is, we can’t see it. This book uses dazzling images and evocative descriptions to reveal the virtually invisible realities and possibilities of nanoscience. An introduction to the science and technology of small things, No Small Matter explains science on the nanoscale. Authors Felice C. Frankel and George M. Whitesides offer an overview of recent scientific advances that have given us our ever-shrinking microtechnology—for instance, an information processor connected by wires only 1,000 atoms wide. They describe the new methods used to study nanostructures, suggest ways of understanding their often bizarre behavior, and outline their uses in technology. This book explains the various means of making nanostructures and speculates about their importance for critical developments in information processing, computation, biomedicine, and other areas. No Small Matter considers both the benefits and the risks of nano/microtechnology—from the potential of quantum computers and single-molecule genomic sequencers to the concerns about self-replicating nanosystems. By making the practical and probable realities of nanoscience as comprehensible and clear as possible, the book provides a unique vision of work at the very boundaries of modern science.




Nanotechnology in Medicine


Book Description

Nanomedicine is the field of science that deals with organic applications of medicine at the nano-scale level. It primarily addresses finding, anticipating, and treating sickness, as well as using nanotechnology to assist in controlling human frameworks at the cellular level. The nature of nanotechnology allows it to address numerous medical issues in humans. This book offers comprehensive information to better comprehend and apply multifunctional nanoparticles in nanomedicine, and thus open avenues in the field. Medicating at the nanolevel is an exceptional therapeutic avenue, as it avoids symptoms associated with conventional medicines. This book investigates recent insights into structuring novel drug delivery frameworks. It concentrates on the physical characteristics of drug delivery transporters, and the preliminary procedures involved in their use. The book offers in-depth detail that benefits academics and researchers alike, containing broad research from experts in the field, and serves as a guide for students and researchers in the field of nanomedicine, drug delivery, and nanotechnology.




Nanoscale


Book Description

An authoritative examination of the present and potential impact of nanoscale science and technology on modern life Because truly transformative technologies have far-reaching consequences, they always generate controversy. Establishing an effective process for identifying and understanding the broad implications of nanotechnology will advance its acceptance and success, impact the decisions of policymakers and regulatory agencies, and facilitate the development of judicious policy approaches to new technology options. Nanoscale: Issues and Perspectives for the Nano Century addresses the emerging ethical, legal, policy, business, and social issues. A compilation of provocative treatises, this reference: Covers an area of increasing research and funding Organizes topics in four sections: Policy and Perspectives; Nano Law and Regulation; Nanomedicine, Ethics, and the Human Condition; and Nano and Society: The NELSI Imperative Presents differing perspectives, with views from nanotechnology's most ardent supporters as well as its most vocal critics Includes contributions from professionals in a variety of industries and disciplines, including science, law, ethics, business, health and safety, government regulation, and policy This is a core reference for professionals dealing with nanotechnology, including scientists from academia and industry, policy makers, ethicists and social scientists, safety and risk assessment professionals, investors, and others. It is also an excellent text for students in fields that involve nanotechnology.