Light Emitting Silicon for Microphotonics


Book Description

A fascinating insight into the state-of-the-art in silicon microphotonics and on what we can expect in the near future. The book presents an overview of the current understanding of getting light from silicon. It concentrates mainly on low dimensional silicon structures, like quantum dots, wires and wells, but covers also alternative approaches like porous silicon and the doping of silicon with rare-earths. The emphasis is on the experimental and theoretical achievements concerning the optoelectronic properties of confined silicon structures obtained during recent years. Silicon based photonic crystals are in particular considered. An in depth discussion of the route towards a silicon laser is presented.




Interconnect Technology and Design for Gigascale Integration


Book Description

This book is jointly authored by leading academic and industry researchers. The material is unique in that it spans IC interconnect topics ranging from IBM's revolutionary copper process to an in-depth exploration into interconnect-aware computer architectures.




Silicon Nanophotonics


Book Description

Photonics is a key technology of this century. The combination of photonics and silicon technology is of great importance because of the potentiality of coupling electronics and optical functions on a single chip. Many experimental and theoretical studies have been performed to understand and design the photonic properties of silicon nanocrystals. Generation of light in silicon is a challenging perspective in the field; however, the issue of light-emitting devices does not limit the activity in the field. Research is also focused on light modulators, optical waveguides and interconnectors, optical amplifiers, detectors, memory elements, photonic crystals, etc. A particularly important task of silicon nanostructures is to generate electrical energy from solar light. Understanding the optical properties of silicon-based materials is central in designing photonic components. It is not possible to control the optical properties of nanoparticles without fundamental information on their microscopic structure, which explains a large number of theoretical works on this subject. Many fundamental and practical problems should be solved in order to develop this technology. In addition to open fundamental questions, it is even more difficult to develop the known experimental results towards practical realization. However, the world market for silicon photonics is expected to be huge; thus, more research activity in the field of silicon nanophotonics is expected in the future. This book describes different aspects of silicon nanophotonics, from fundamental issues to practical devices. The second edition is essentially different from the book published in 2008. Eight chapters of the first edition are not included in the new book, because the recent progress on those topics has not been large enough. Instead, seven new chapters appear. The other eight chapters are essentially modified to describe recent achievements in the field.




Sinep 2009. 1st International Workshop on Si Based Nano-Electronics and -Photonics


Book Description

The main objective of this International Workshop in Vigo is to target this major problem by bringing together scientists and engineers specialized on various different topics related to group IV semiconductors. In five consecutive sessions dedicated to - Group IV materials: CMOS and further extension of the roadmap - Group IV materials: Nano-photonics - Material aspects and characterization on nano-scale - Nanostructures and material processing on atomic scale




Materials Science Reading Sampler


Book Description

The 2013 Materials Science eBook Sampler includes select material from seven Materials Science titles. Titles are from a number of Wiley imprints including Wiley, Wiley-VCH, Wiley-American Ceramic Society, Wiley-Scrivener and Wiley-The Minerals, Metals and Materials Society. The material that is included for each selection is the book’s full Table of Contents as well as a sample chapter. If you would like to read more from these books, you can purchase the full book or e-book at your favorite online retailer.




Nanostructured Semiconductors


Book Description

This book focuses on nanostructured semiconductors, their fabrication, and their application in various fields such as optics, acoustics, and biomedicine. It presents a compendium of recent developments in nanostructured and hybrid materials and also contains a collection of principles and approaches related to nano-size semiconductors. The text su




New Topics in Lasers and Electro-optics


Book Description

It is expected that ongoing advances in optics will revolutionise the 21st century as they began doing in the last quarter of the 20th. Such fields as communications, materials science, computing and medicine are leaping forward based on developments in optics.




Silicon Photonics


Book Description

This book gives a fascinating picture of the state-of-the-art in silicon photonics and a perspective on what can be expected in the near future. It is composed of a selected number of reviews authored by world leaders in the field and is written from both academic and industrial viewpoints. An in-depth discussion of the route towards fully integrated silicon photonics is presented. This book will be useful not only to physicists, chemists, materials scientists, and engineers but also to graduate students who are interested in the fields of microphotonics and optoelectronics.




Biosensors


Book Description

This book covers novel and current strategies for biosensing, from the use of nanomaterials and biological functionalized surfaces to the mathematical assessment of novel biosensors and their potential use as wearable devices for continuous monitoring. Biosensing technologies can be used in the medical field for the early detection of disease, monitoring effectiveness of treatments, detecting nervous system signals for controlling robotic prosthesis, and much more. This book includes eleven chapters that examine and discuss several strategies of biosensing, proposing mathematical designs that address the latest reported technologies.