Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation


Book Description

A comprehensive, practical approach to three powerful methods of polymer analysis and characterization This book serves as a complete compendium of three important methods widely used for the characterization of synthetic and natural polymers—light scattering, size exclusion chromatography (SEC), and asymmetric flow field flow fractionation (A4F). Featuring numerous up-to-date examples of experimental results obtained by light scattering, SEC, and A4F measurements, Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation takes an all-in-one approach to deliver a complete and thorough explanation of the principles, theories, and instrumentation needed to characterize polymers from the viewpoint of their molar mass distribution, size, branching, and aggregation. This comprehensive resource: Is the only book gathering light scattering, size exclusion chromatography, and asymmetric flow field flow fractionation into a single text Systematically compares results of size exclusion chromatography with results of asymmetric flow field flow fractionation, and how these two methods complement each other Provides in-depth guidelines for reproducible and correct determination of molar mass and molecular size of polymers using SEC or A4F coupled with a multi-angle light scattering detector Offers a detailed overview of the methodology, detection, and characterization of polymer branching Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation should be of great interest to all those engaged in the polymer analysis and characterization in industrial and university research, as well as in manufacturing quality control laboratories. Both beginners and experienced can confidently rely on this volume to confirm their own understanding or to help interpret their results.




Field-Flow Fractionation in Biopolymer Analysis


Book Description

This is a timely collection of important biomedical applications for a set of separation/characterization techniques that are rapidly gaining popularity due to their wide dynamic range, high resolution, and ability to function in most commonly used solvent systems. Importantly, the field-flow fractionation (FFF) technique has recently emerged as a prominent complement to size exclusion chromatography for protein pharmaceuticals. Fractionation with FFF is gentle and preserves protein structural integrity better than existing alternatives. In the present text, different chapters are written by experts in their respective field of application, who offer comparisons between the FFF techniques and other methods for characterizing their special focus material. Practical guide-lines for successful implementation, such as choice of operating conditions, are offered in conjunction with each application. In addition to new instrumentation and approaches that address important current topics, readers are provided with an overall sense of prior (but timeless) major developments that may be overlooked in literature searches.




Field-Flow Fractionation Handbook


Book Description

Field flow fractionation (FFF) is an emerging separation technique, which has been proven successful in the analysis of pharmaceuticals, biotechnology products, polymers, soils, and foods, among others. In this book, Martin Schimpf joins forces with Karin Caldwell and J. Calvin Giddings, two of the primary developers of this technique, to bring you the first comprehensive, one-stop reference on the technique.




Field-Flow Fractionation


Book Description

Field-flow fractionation has become a very effective method for the separation and analytical characterization of substances of macromolecular and particulate character-making this method probably the most important discovery in the analytical separation field since World War II. The first, complete, up-to-date reference on this notable separation method, Field-Flow Fractionation includes comprehensive explanations of general and theoretical principles . . . presents detailed descriptions of experimental techniques and instrumentation ... and discusses advantages over competitive processes. In addition, this resource demonstrates various applications for characterizing synthetic polymers ... analyzing biopolymers and particles in environmental samples ... and determining sizes of biological cells, viruses, and subcellular particles. Substantiating main conclusions of theories, experiments, and applications with graphs and drawings, and including numerous tables and photographs, this one-source reference is invaluable reading for analytical, industrial, physical, and polymer chemists; chrom­ atographers; biochemists; biotechnologists; biophysicists; and all others interested in the study and characterization of macromolecules or particles of various origins.




Modern Size-Exclusion Liquid Chromatography


Book Description

The Second Edition of Modern Size-Exclusion Chromatography offers a complete guide to the theories, methods, and applications of size-exclusion chromatography. It provides an unparalleled, integrated, up-to-date treatment of gel permeation and gel filtration chromatography. With its detailed descriptions of techniques, data handling, compilations of information on columns and column packings, and tables of important solvents and reference materials, the book offers readers everything they need to take full advantage of this popular macromolecular characterization technique. Since publication of the first edition in 1979, there have been many important advances in the field of size-exclusion chromatography. This Second Edition brings the book thoroughly up to date, with expert coverage of: New and emerging industrial and research applications Practical aspects of size-exclusion chromatography (SEC) and multidetector and multidimensional SEC technologies for polymer architecture and copolymer analysis Updated information on the latest equipment and techniques New best practices for the lab SEC in relation to polymer characterization techniques such as GPEC, LCCC, and rheology Throughout the text, detailed examples guide you step by step through all the latest techniques and applications. With its extensive revisions and updates written by leading experts and pioneers in the field, Modern Size-Exclusion Liquid Chromatography remains the definitive resource for the broad range of researchers and scientists who use HPLC and GPC methods.




Soft-Matter Characterization


Book Description

This 2-volume set includes extensive discussions of scattering techniques (light, neutron and X-ray) and related fluctuation and grating techniques that are at the forefront of this field. Most of the scattering techniques are Fourier space techniques. Recent advances have seen the development of powerful direct imaging methods such as atomic force microscopy and scanning probe microscopy. In addition, techniques that can be used to manipulate soft matter on the nanometer scale are also in rapid development. These include the scanning probe microscopy technique mentioned above as well as optical and magnetic tweezers.




Light Scattering from Polymer Solutions and Nanoparticle Dispersions


Book Description

Light scattering is a very powerful method for characterizing the structure of polymers and nanoparticles in solution. As part of the Springer Laboratory series, this book provides a simple-to-read and illustrative textbook probing the seemingly very complicated topic of light scattering from polymers and nanoparticles in dilute solution, and goes further to cover some of the latest technical developments in experimental light scattering.




Modern Methods of Polymer Characterization


Book Description

Presents the methods used for characterization of polymers. In addition to theory and basic principles, the instrumentation and apparatus necessary for methods used to study the kinetic and thermodynamic interactions of a polymer with its environment are covered in detail. Some of the methods examined include polymer separations and characterization by size exclusion and high performance chromatography, inverse gas chromatography, osmometry, viscometry, ultracentrifugation, light scattering and spectroscopy.




Pharmaceutical Crystals


Book Description

An important resource that puts the focus on understanding and handling of organic crystals in drug development Since a majority of pharmaceutical solid-state materials are organic crystals, their handling and processing are critical aspects of drug development. Pharmaceutical Crystals: Science and Engineering offers an introduction to and thorough coverage of organic crystals, and explores the essential role they play in drug development and manufacturing. Written contributions from leading researchers and practitioners in the field, this vital resource provides the fundamental knowledge and explains the connection between pharmaceutically relevant properties and the structure of a crystal. Comprehensive in scope, the text covers a range of topics including: crystallization, molecular interactions, polymorphism, analytical methods, processing, and chemical stability. The authors clearly show how to find solutions for pharmaceutical form selection and crystallization processes. Designed to be an accessible guide, this book represents a valuable resource for improving the drug development process of small drug molecules. This important text: Includes the most important aspects of solid-state organic chemistry and its role in drug development Offers solutions for pharmaceutical form selection and crystallization processes Contains a balance between the scientific fundamental and pharmaceutical applications Presents coverage of crystallography, molecular interactions, polymorphism, analytical methods, processing, and chemical stability Written for both practicing pharmaceutical scientists, engineers, and senior undergraduate and graduate students studying pharmaceutical solid-state materials, Pharmaceutical Crystals: Science and Engineering is a reference and textbook for understanding, producing, analyzing, and designing organic crystals which is an imperative skill to master for anyone working in the field.