Light Waves and Their Uses
Author : Albert Abraham Michelson
Publisher :
Page : 184 pages
File Size : 28,6 MB
Release : 1902
Category : Ether (Space)
ISBN :
Author : Albert Abraham Michelson
Publisher :
Page : 184 pages
File Size : 28,6 MB
Release : 1902
Category : Ether (Space)
ISBN :
Author : Ginger Butcher
Publisher : Government Printing Office
Page : 40 pages
File Size : 27,94 MB
Release : 2016
Category : Artificial satellites
ISBN : 9780996778022
Author : Mike Goldsmith
Publisher :
Page : 161 pages
File Size : 43,48 MB
Release : 2018
Category : Science
ISBN : 0198803788
From sound waves to gravitational waves, and from waves of light to crashing rollers on the ocean, Mike Goldsmith explores the fundamental features shared by all waves in the natural world, and considers the range of phenomena resulting from wave motion, including reflection, diffraction, and polarization in light, and beats and echoes in sound.
Author : Samuel J. Ling
Publisher :
Page : 818 pages
File Size : 21,6 MB
Release : 2017-12-19
Category : Science
ISBN : 9789888407613
University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves
Author : Reza K. Amineh
Publisher : MDPI
Page : 242 pages
File Size : 31,4 MB
Release : 2021-01-20
Category : Technology & Engineering
ISBN : 303936300X
Electromagnetic (EM) waves carry energy through propagation in space. This radiation associates with entangled electric and magnetic fields which must exist simultaneously. Although all EM waves travel at the speed of light in vacuum, they cover a wide range of frequencies called the EM spectrum. The various portions of the EM spectrum are referred to by various names based on their different attributes in the emission, transmission, and absorption of the corresponding waves and also based on their different practical applications. There are no certain boundaries separating these various portions, and the ranges tend to overlap. Overall, the EM spectrum, from the lowest to the highest frequency (longest to shortest wavelength) contains the following waves: radio frequency (RF), microwaves, millimeter waves, terahertz, infrared, visible light, ultraviolet, X-rays, and gamma rays. This Special Issue consists of sixteen papers covering a broad range of topics related to the applications of EM waves, from the design of filters and antennas for wireless communications to biomedical imaging and sensing and beyond.
Author : James W. Bellew
Publisher : F.A. Davis
Page : 1242 pages
File Size : 25,87 MB
Release : 2022-01-24
Category : Medical
ISBN : 1719647666
A volume in the Contemporary Perspectives in Rehabilitation Series, curated by Steven L. Wolf, PhD, PT, FAPTA Implement a current, evidence-based approach to the selection, application, and uses of therapeutic modalities as an essential tool for functionally based rehabilitation and as a complement to other types of interventions in a patient-centered model of care. The 7th Edition of this groundbreaking text fosters an in-depth understanding of the science behind each modality, its advantages and limitations, its appropriateness for specific conditions, and its implementation. A hands-on problem-solving approach promotes the development of essential clinical decision-making skills through a wealth of full-color photographs and illustrations, special features, and challenging cases studies. See what students and practitioners are saying about the previous edition… Recommend this book. “Great clinical reference for young therapists and seasoned therapists alike. Great information in a nicely organized book.”—Jane D., Online Reviewer Excellent book “Excellent content. Therapeutic modalities and many more... including spinal decompression devices.”—Online Reviewer
Author : OpenStax
Publisher :
Page : 622 pages
File Size : 39,83 MB
Release : 2016-11-04
Category : Science
ISBN : 9781680920451
University Physics is a three-volume collection that meets the scope and sequence requirements for two- and three-semester calculus-based physics courses. Volume 1 covers mechanics, sound, oscillations, and waves. Volume 2 covers thermodynamics, electricity and magnetism, and Volume 3 covers optics and modern physics. This textbook emphasizes connections between between theory and application, making physics concepts interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. Frequent, strong examples focus on how to approach a problem, how to work with the equations, and how to check and generalize the result. The text and images in this textbook are grayscale.
Author : Wayne D. Kimura
Publisher : Morgan & Claypool Publishers
Page : 120 pages
File Size : 19,82 MB
Release : 2017-12-08
Category : Science
ISBN : 168174614X
This book reviews basic electromagnetic (EM) wave theory and applies it specifically to lasers in order to give the reader not only tangible examples of how the theory is manifested in real life, but also practical knowledge about lasers, and their operation and usage. The latter can be useful for those involved with using lasers. As a short treatise on this subject matter, this book is not intended to dwell deeply into the details of EM waves nor lasers. A bibliography is provided for those who wish to explore in more depth the topics covered in this book. Rather the aim of this book is to offer a quick overview, which will allow the reader to gain a competent general understanding of EM waves and lasers.
Author : Michael Ware
Publisher : Lulu.com
Page : 350 pages
File Size : 29,91 MB
Release : 2015
Category : Electromagnetic waves
ISBN : 1312929278
Author : Ivo Čáp
Publisher : BoD – Books on Demand
Page : 226 pages
File Size : 26,27 MB
Release : 2021-12-24
Category : Science
ISBN : 1789853478
The book deals with the analysis of oscillations, mechanical and electromagnetic waves, and their use in medicine. Each chapter contains the theoretical basis and the use of relevant phenomena in medical practice. Description of oscillations is important for understanding waves and the nature of magnetic resonance. A chapter on mechanical waves describes the origin and properties of sound, infrasound and ultrasound, their medical applications, and perception of sound by human hearing. A chapter on electromagnetic waves examines their origin, properties, and applications in therapy and diagnostics. Subsequent chapters describe how interference and diffraction lead to applications like optical imaging, holography, virtual reality, and perception of light by human vision. Also addressed is how quantum properties of radiation helped develop the laser scalpel, fluorescence microscopy, spectroscopy, X-rays, and gamma radiation.