Lightwave Technology


Book Description

The state of the art of modern lightwave system design Recent advances in lightwave technology have led to an explosion ofhigh-speed global information systems throughout the world.Responding to the growth of this exciting new technology, LightwaveTechnology provides a comprehensive and up-to-date account of theunderlying theory, development, operation, and management of thesesystems from the perspective of both physics and engineering. The first independent volume of this two-volume set, Components andDevices, deals with the multitude of silica- andsemiconductor-based optical devices. This second volume,Telecommunication Systems, helps readers understand the design ofmodern lightwave systems, with an emphasis on wavelength-divisionmultiplexing (WDM) systems. * Two introductory chapters cover topics such as modulation formatsand multiplexing techniques used to create optical bitstreams * Chapters 3 to 5 consider degradation of optical signals throughloss, dispersion, and nonlinear impairment during transmission andits corresponding impact on system performance * Chapters 6 to 8 provide readers with strategies for managingdegradation induced by amplifier noise, fiber dispersion, andvarious nonlinear effects * Chapters 9 and 10 discuss the engineering issues involved in thedesign of WDM systems and optical networks Each chapter includes problems that enable readers to engage andtest their new knowledge to solve problems. A CD containingilluminating examples based on RSoft Design Group's award-winningOptSim optical communication system simulation software is includedwith the book to assist readers in understanding design issues.Finally, extensive, up-to-date references at the end of eachchapter enable students and researchers to gather more informationabout the most recent technology breakthroughs andapplications. With its extensive problem sets and straightforward writing style,this is an excellent textbook for upper-level undergraduate andgraduate students. Research scientists and engineers working inlightwave technology will use this text as a problem-solvingresource and a reference to additional research papers in thefield.




Digital Optical Communications


Book Description

The need for advanced transmission techniques over long haul optically amplified communications has prompted a convergence of digital and optical communications. Digital Optical Communications explores the practical applications of this union and applies digital modulation techniques to optical communications systems.After reviewing the fundamental




IP over WDM


Book Description

The key technology to delivering maximum bandwidth over networks is Dense Wave-length Division Multiplexing (DWDM) Describes in detail how DWDM works and how to implement a range of transmission protocols Covers device considerations, the pros and cons of various network layer protocols, and quality of service (QoS) issues The authors are leading experts in this field and provide real-world implementation examples First book to describe the interplay between the physical and IP (Internet Protocol) layers in optical networks




Coherent Optics for Access Networks


Book Description

This book will highlight the motivation for coherent optics in access and introduce digital coherent optical system in detail, including advanced modulation formats, architecture of modulation and detection, and DSP flow for both transmitter and receiver. This book will also demonstrate potential approaches to re-design and re-engineer the digital coherent concept from long-haul and metro solutions to the access network, leveraging reduction in complexity and cost as well as the benefits of capacity increases and operational improvements. This book will illustrate the details on optimization of the digital, optical, and electrical complexity and standardization and interoperability.




Handbook of Optical Sensors


Book Description

Handbook of Optical Sensors provides a comprehensive and integrated view of optical sensors, addressing the fundamentals, structures, technologies, applications, and future perspectives. Featuring chapters authored by recognized experts and major contributors to the field, this essential reference: Explains the basic aspects of optical sensors and the principles of optical metrology, presenting a brief historical review Explores the role of optical waveguides in sensing and discusses sensor technologies based on intensity and phase modulation, fluorescence, and plasmonic waves Describes wavefront sensing, multiphoton microscopy, and imaging based on optical coherence tomography Covers optical fiber sensing, from light guiding in standard and microstructured optical fibers to sensor multiplexing, distributed sensing, and fiber Bragg grating Offers a broad perspective of the field and identifies trends that could shape the future, such as metamaterials and entangled quantum states of light Handbook of Optical Sensors is an ideal resource for practitioners and those seeking optical solutions for their specific needs, as well as for students and investigators who are the intellectual driving force of optical sensing.




Optical Modulation


Book Description

This books aims to present fundamental aspects of optical communication techniques and advanced modulation techniques and extensive applications of optical communications systems and networks employing single-mode optical fibers as the transmission system. New digital techqniues such as chromatic dispersion, polarization mode dispersion, nonlinear phase distortion effects, etc. will be discussed. Practical models for practice and understanding the behavior and dynamics of the devices and systems will be included.




Fundamentals of Optical Fiber Sensors


Book Description

This book describes the latest development in optical fiber devices, and their applications to sensor technology. Optical fiber sensors, an important application of the optical fiber, have experienced fast development, and attracted wide attentions in basic science as well as in practical applications. Sensing is often likened to human sense organs. Optical fiber can not only transport information acquired by sensors at high speed and large volume, but also can play the roles of sensing element itself. Compared with electric and other types of sensors, fiber sensor technology has unique merits. It has advantages over conventional bulky optic sensors, such as combination of sensing and signal transportation, smaller size, and possibility of building distributed systems. Fiber sensor technology has been used in various areas of industry, transportation, communication, security and defense, as well as daily life. Its importance has been growing with the advancement of the technology and the expansion of the scope of its application, a growth this book fully describes.




Smart Sensors for Industrial Applications


Book Description

Sensor technologies are a rapidly growing area of interest in science and product design, embracing developments in electronics, photonics, mechanics, chemistry, and biology. Their presence is widespread in everyday life, where they are used to sense sound, movement, and optical or magnetic signals. The demand for portable and lightweight sensors is relentless in several industries, from consumer electronics to biomedical engineering to the military. Smart Sensors for Industrial Applications brings together the latest research in smart sensors technology and exposes the reader to myriad applications that this technology has enabled. Organized into five parts, the book explores: Photonics and optoelectronics sensors, including developments in optical fibers, Brillouin detection, and Doppler effect analysis. Chapters also look at key applications such as oxygen detection, directional discrimination, and optical sensing. Infrared and thermal sensors, such as Bragg gratings, thin films, and microbolometers. Contributors also cover temperature measurements in industrial conditions, including sensing inside explosions. Magnetic and inductive sensors, including magnetometers, inductive coupling, and ferro-fluidics. The book also discusses magnetic field and inductive current measurements in various industrial conditions, such as on airplanes. Sound and ultrasound sensors, including underwater acoustic modem, vibrational spectroscopy, and photoacoustics. Piezoresistive, wireless, and electrical sensors, with applications in health monitoring, agrofood, and other industries. Featuring contributions by experts from around the world, this book offers a comprehensive review of the groundbreaking technologies and the latest applications and trends in the field of smart sensors.




Polarization Optics in Telecommunications


Book Description

The strong investments into optical telecommunications in the late 1990s resulted in a wealth of new research, techniques, component designs, and understanding of polarization effects in fiber. Polarization Optics in Telecommunications brings together recent advances in the field to create a standard, practical reference for component designers and optical fiber communication engineers. Beginning with a sound foundation in electromagnetism, the author offers a dissertation of the spin-vector formalism of polarization and the interaction of light with media. Applications discussed include optical isolators, optical circulators, fiber collimators, and a variety of applied waveplate and prism combinations. Also included in an extended discussion of polarization-mode dispersion (PMD) and polarization-dependent loss (PDL), their representation, behavior, statistical properties, and measurement. This book draws extensively from the technical and patent literature and is an up-to-date reference for researchers and component designers in industry and academia.