Linear-Fractional Programming Theory, Methods, Applications and Software


Book Description

This is a book on Linear-Fractional Programming (here and in what follows we will refer to it as "LFP"). The field of LFP, largely developed by Hungarian mathematician B. Martos and his associates in the 1960's, is concerned with problems of op timization. LFP problems deal with determining the best possible allo cation of available resources to meet certain specifications. In particular, they may deal with situations where a number of resources, such as people, materials, machines, and land, are available and are to be combined to yield several products. In linear-fractional programming, the goal is to determine a per missible allocation of resources that will maximize or minimize some specific showing, such as profit gained per unit of cost, or cost of unit of product produced, etc. Strictly speaking, linear-fractional programming is a special case of the broader field of Mathematical Programming. LFP deals with that class of mathematical programming problems in which the relations among the variables are linear: the con straint relations (i.e. the restrictions) must be in linear form and the function to be optimized (i.e. the objective function) must be a ratio of two linear functions.




Fractional Programming


Book Description

Mathematical programming has know a spectacular diversification in the last few decades. This process has happened both at the level of mathematical research and at the level of the applications generated by the solution methods that were created. To write a monograph dedicated to a certain domain of mathematical programming is, under such circumstances,especially difficult. In the present monograph we opt for the domain of fractional programming. Interest of this subject was generated by the fact that various optimization problems from engineering and economics consider the minimization of a ratio between physical and/or economical functions, for example cost/time, cost/volume,cost/profit, or other quantities that measure the efficiency of a system. For example, the productivity of industrial systems, defined as the ratio between the realized services in a system within a given period of time and the utilized resources, is used as one of the best indicators of the quality of their operation. Such problems, where the objective function appears as a ratio of functions, constitute fractional programming problem. Due to its importance in modeling various decision processes in management science, operational research, and economics, and also due to its frequent appearance in other problems that are not necessarily economical, such as information theory, numerical analysis, stochastic programming, decomposition algorithms for large linear systems, etc., the fractional programming method has received particular attention in the last three decades.




Linear Integer Programming


Book Description

This book presents the state-of-the-art methods in Linear Integer Programming, including some new algorithms and heuristic methods developed by the authors in recent years. Topics as Characteristic equation (CE), application of CE to bi-objective and multi-objective problems, Binary integer problems, Mixed-integer models, Knapsack models, Complexity reduction, Feasible-space reduction, Random search, Connected graph are also treated.




ICT and Critical Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of India- Vol I


Book Description

This volume contains 88 papers presented at CSI 2013: 48th Annual Convention of Computer Society of India with the theme “ICT and Critical Infrastructure”. The convention was held during 13th –15th December 2013 at Hotel Novotel Varun Beach, Visakhapatnam and hosted by Computer Society of India, Vishakhapatnam Chapter in association with Vishakhapatnam Steel Plant, the flagship company of RINL, India. This volume contains papers mainly focused on Computational Intelligence and its applications, Mobile Communications and social Networking, Grid Computing, Cloud Computing, Virtual and Scalable Applications, Project Management and Quality Systems and Emerging Technologies in hardware and Software.




Fractional Programming


Book Description




Optimization Techniques for Problem Solving in Uncertainty


Book Description

When it comes to optimization techniques, in some cases, the available information from real models may not be enough to construct either a probability distribution or a membership function for problem solving. In such cases, there are various theories that can be used to quantify the uncertain aspects. Optimization Techniques for Problem Solving in Uncertainty is a scholarly reference resource that looks at uncertain aspects involved in different disciplines and applications. Featuring coverage on a wide range of topics including uncertain preference, fuzzy multilevel programming, and metaheuristic applications, this book is geared towards engineers, managers, researchers, and post-graduate students seeking emerging research in the field of optimization.




Handbook of Generalized Convexity and Generalized Monotonicity


Book Description

Studies in generalized convexity and generalized monotonicity have significantly increased during the last two decades. Researchers with very diverse backgrounds such as mathematical programming, optimization theory, convex analysis, nonlinear analysis, nonsmooth analysis, linear algebra, probability theory, variational inequalities, game theory, economic theory, engineering, management science, equilibrium analysis, for example are attracted to this fast growing field of study. Such enormous research activity is partially due to the discovery of a rich, elegant and deep theory which provides a basis for interesting existing and potential applications in different disciplines. The handbook offers an advanced and broad overview of the current state of the field. It contains fourteen chapters written by the leading experts on the respective subject; eight on generalized convexity and the remaining six on generalized monotonicity.




Encyclopedia of Operations Research and Management Science


Book Description

Operations Research: 1934-1941," 35, 1, 143-152; "British The goal of the Encyclopedia of Operations Research and Operational Research in World War II," 35, 3, 453-470; Management Science is to provide to decision makers and "U. S. Operations Research in World War II," 35, 6, 910-925; problem solvers in business, industry, government and and the 1984 article by Harold Lardner that appeared in academia a comprehensive overview of the wide range of Operations Research: "The Origin of Operational Research," ideas, methodologies, and synergistic forces that combine to 32, 2, 465-475. form the preeminent decision-aiding fields of operations re search and management science (OR/MS). To this end, we The Encyclopedia contains no entries that define the fields enlisted a distinguished international group of academics of operations research and management science. OR and MS and practitioners to contribute articles on subjects for are often equated to one another. If one defines them by the which they are renowned. methodologies they employ, the equation would probably The editors, working with the Encyclopedia's Editorial stand inspection. If one defines them by their historical Advisory Board, surveyed and divided OR/MS into specific developments and the classes of problems they encompass, topics that collectively encompass the foundations, applica the equation becomes fuzzy. The formalism OR grew out of tions, and emerging elements of this ever-changing field. We the operational problems of the British and U. s. military also wanted to establish the close associations that OR/MS efforts in World War II.




Semi-Infinite Fractional Programming


Book Description

This book presents a smooth and unified transitional framework from generalised fractional programming, with a finite number of variables and a finite number of constraints, to semi-infinite fractional programming, where a number of variables are finite but with infinite constraints. It focuses on empowering graduate students, faculty and other research enthusiasts to pursue more accelerated research advances with significant interdisciplinary applications without borders. In terms of developing general frameworks for theoretical foundations and real-world applications, it discusses a number of new classes of generalised second-order invex functions and second-order univex functions, new sets of second-order necessary optimality conditions, second-order sufficient optimality conditions, and second-order duality models for establishing numerous duality theorems for discrete minmax (or maxmin) semi-infinite fractional programming problems. In the current interdisciplinary supercomputer-oriented research environment, semi-infinite fractional programming is among the most rapidly expanding research areas in terms of its multi-facet applications empowerment for real-world problems, which may stem from many control problems in robotics, outer approximation in geometry, and portfolio problems in economics, that can be transformed into semi-infinite problems as well as handled by transforming them into semi-infinite fractional programming problems. As a matter of fact, in mathematical optimisation programs, a fractional programming (or program) is a generalisation to linear fractional programming. These problems lay the theoretical foundation that enables us to fully investigate the second-order optimality and duality aspects of our principal fractional programming problem as well as its semi-infinite counterpart.




An Introduction to Linear Programming and Game Theory


Book Description

Praise for the Second Edition: "This is quite a well-done book: very tightly organized, better-than-average exposition, and numerous examples, illustrations, and applications." —Mathematical Reviews of the American Mathematical Society An Introduction to Linear Programming and Game Theory, Third Edition presents a rigorous, yet accessible, introduction to the theoretical concepts and computational techniques of linear programming and game theory. Now with more extensive modeling exercises and detailed integer programming examples, this book uniquely illustrates how mathematics can be used in real-world applications in the social, life, and managerial sciences, providing readers with the opportunity to develop and apply their analytical abilities when solving realistic problems. This Third Edition addresses various new topics and improvements in the field of mathematical programming, and it also presents two software programs, LP Assistant and the Solver add-in for Microsoft Office Excel, for solving linear programming problems. LP Assistant, developed by coauthor Gerard Keough, allows readers to perform the basic steps of the algorithms provided in the book and is freely available via the book's related Web site. The use of the sensitivity analysis report and integer programming algorithm from the Solver add-in for Microsoft Office Excel is introduced so readers can solve the book's linear and integer programming problems. A detailed appendix contains instructions for the use of both applications. Additional features of the Third Edition include: A discussion of sensitivity analysis for the two-variable problem, along with new examples demonstrating integer programming, non-linear programming, and make vs. buy models Revised proofs and a discussion on the relevance and solution of the dual problem A section on developing an example in Data Envelopment Analysis An outline of the proof of John Nash's theorem on the existence of equilibrium strategy pairs for non-cooperative, non-zero-sum games Providing a complete mathematical development of all presented concepts and examples, Introduction to Linear Programming and Game Theory, Third Edition is an ideal text for linear programming and mathematical modeling courses at the upper-undergraduate and graduate levels. It also serves as a valuable reference for professionals who use game theory in business, economics, and management science.