Linear Spaces with Few Lines


Book Description

A famous theorem in the theory of linear spaces states that every finite linear space has at least as many lines as points. This result of De Bruijn and Erd|s led to the conjecture that every linear space with "few lines" canbe obtained from a projective plane by changing only a small part of itsstructure. Many results related to this conjecture have been proved in the last twenty years. This monograph surveys the subject and presents several new results, such as the recent proof of the Dowling-Wilsonconjecture. Typical methods used in combinatorics are developed so that the text can be understood without too much background. Thus the book will be of interest to anybody doing combinatorics and can also help other readers to learn the techniques used in this particular field.




Clifford Wavelets, Singular Integrals, and Hardy Spaces


Book Description

The book discusses the extensions of basic Fourier Analysis techniques to the Clifford algebra framework. Topics covered: construction of Clifford-valued wavelets, Calderon-Zygmund theory for Clifford valued singular integral operators on Lipschitz hyper-surfaces, Hardy spaces of Clifford monogenic functions on Lipschitz domains. Results are applied to potential theory and elliptic boundary value problems on non-smooth domains. The book is self-contained to a large extent and well-suited for graduate students and researchers in the areas of wavelet theory, Harmonic and Clifford Analysis. It will also interest the specialists concerned with the applications of the Clifford algebra machinery to Mathematical Physics.




Combinatorics '90


Book Description

This volume forms a valuable source of information on recent developments in research in combinatorics, with special regard to the geometric point of view. Topics covered include: finite geometries (arcs, caps, special varieties in a Galois space; generalized quadrangles; Benz planes; foundation of geometry), partial geometries, Buekenhout geometries, transitive permutation sets, flat-transitive geometries, design theory, finite groups, near-rings and semifields, MV-algebras, coding theory, cryptography and graph theory in its geometric and design aspects.




CRC Handbook of Combinatorial Designs


Book Description

From experimental design to cryptography, this comprehensive, easy-to-access reference contains literally all the facts you need on combinatorial designs. It includes constructions of designs, existence results, and properties of designs. Organized into six main parts, the CRC Handbook of Combinatorial Designs covers:







Topological Vector Spaces and Their Applications


Book Description

This book gives a compact exposition of the fundamentals of the theory of locally convex topological vector spaces. Furthermore it contains a survey of the most important results of a more subtle nature, which cannot be regarded as basic, but knowledge which is useful for understanding applications. Finally, the book explores some of such applications connected with differential calculus and measure theory in infinite-dimensional spaces. These applications are a central aspect of the book, which is why it is different from the wide range of existing texts on topological vector spaces. Overall, this book develops differential and integral calculus on infinite-dimensional locally convex spaces by using methods and techniques of the theory of locally convex spaces. The target readership includes mathematicians and physicists whose research is related to infinite-dimensional analysis.










Topological Vector Spaces, Distributions and Kernels


Book Description

Topological Vector Spaces, Distributions and Kernels discusses partial differential equations involving spaces of functions and space distributions. The book reviews the definitions of a vector space, of a topological space, and of the completion of a topological vector space. The text gives examples of Frechet spaces, Normable spaces, Banach spaces, or Hilbert spaces. The theory of Hilbert space is similar to finite dimensional Euclidean spaces in which they are complete and carry an inner product that can determine their properties. The text also explains the Hahn-Banach theorem, as well as the applications of the Banach-Steinhaus theorem and the Hilbert spaces. The book discusses topologies compatible with a duality, the theorem of Mackey, and reflexivity. The text describes nuclear spaces, the Kernels theorem and the nuclear operators in Hilbert spaces. Kernels and topological tensor products theory can be applied to linear partial differential equations where kernels, in this connection, as inverses (or as approximations of inverses), of differential operators. The book is suitable for vector mathematicians, for students in advanced mathematics and physics.




Projective Geometry


Book Description

Projective geometry is not only a jewel of mathematics, but has also many applications in modern information and communication science. This book presents the foundations of classical projective and affine geometry as well as its important applications in coding theory and cryptography. It also could serve as a first acquaintance with diagram geometry. Written in clear and contemporary language with an entertaining style and around 200 exercises, examples and hints, this book is ideally suited to be used as a textbook for study in the classroom or on its own.