Linear Time-Invariant Systems


Book Description

A new and practical approach to understanding system theory The modern development of engineering and science requires a deep understanding of the basic concepts of system theory. Approaching the subject from a system, rather than an application-oriented perspective, world-renowned system expert Martin Schetzen provides practicing engineers and scientists, as well as students, with a solid, clearly explained foundation in the fundamentals of linear time-invariant (continuous) system theory. Developing linear systems from a functional viewpoint, the book is noteworthy for its presentation of: The time-domain theory of continuous time linear time-invariant (LTI) systems System transfer function, gain, and phase-shift An original development of the Fourier transform, the unilateral and bilateral Laplace transforms, and their inverses from a system theory viewpoint Basic filter analysis and design techniques from the s-plane viewpoint Feedback systems and their stability, interconnected systems, and block diagram reduction The state-variable approach to system analysis and its advantages for certain problems Taking an original, highly useful approach to system theory, Linear Time-Invariant Systems lays a solid foundation for further study of system modeling, control theory, filter theory, discrete system theory, state-variable theory, and other subjects requiring a system viewpoint. An Instructor's Manual presenting detailed solutions to all the problems in the book is available upon request from the Wiley Makerting Department.




Linear Time Varying Systems and Sampled-data Systems


Book Description

This monograph considers linear optimal regulators, differential games and develops the theory for time-varying systems and jump systems.




Continuous-Time Systems


Book Description

This work offers students at all levels a description of linear, nonlinear, time-invariant, and time-varying electronic continuous-time systems. As an assemblage of physical or mathematical components organized and interacting to convert an input signal to an output signal, an electronic system can be described using different methods offered by the modern systems theory. To make possible for readers to understand systems, the book systematically covers the major foundations of the systems theory.




Intelligent Systems in Cybernetics and Automation Theory


Book Description

This volume is based on the research papers presented in the 4th Computer Science On-line Conference. The volume Intelligent Systems in Cybernetics and Automation Control Theory presents new approaches and methods to real-world problems, and in particular, exploratory research that describes novel approaches in the field of cybernetics and automation control theory. Particular emphasis is laid on modern trends in selected fields of interest. New algorithms or methods in a variety of fields are also presented. The Computer Science On-line Conference (CSOC2015) is intended to provide an international forum for discussions on the latest high-quality research results in all areas related to Computer Science. The addressed topics are the theoretical aspects and applications of Computer Science, Artificial Intelligences, Cybernetics, Automation Control Theory and Software Engineering.




Signals and Systems


Book Description

This text deals with signals, systems, and transforms, from their theoretical mathematical foundations to practical implementation in circuits and computer algorithms. At its conclusion, learners will have a deep understanding of the mathematics and practical issues of signals in continuous and discrete time, linear time invariant systems, convolution, and Fourier transforms.




Understanding Digital Signal Processing


Book Description

Amazon.com’s Top-Selling DSP Book for Seven Straight Years—Now Fully Updated! Understanding Digital Signal Processing, Third Edition, is quite simply the best resource for engineers and other technical professionals who want to master and apply today’s latest DSP techniques. Richard G. Lyons has updated and expanded his best-selling second edition to reflect the newest technologies, building on the exceptionally readable coverage that made it the favorite of DSP professionals worldwide. He has also added hands-on problems to every chapter, giving students even more of the practical experience they need to succeed. Comprehensive in scope and clear in approach, this book achieves the perfect balance between theory and practice, keeps math at a tolerable level, and makes DSP exceptionally accessible to beginners without ever oversimplifying it. Readers can thoroughly grasp the basics and quickly move on to more sophisticated techniques. This edition adds extensive new coverage of FIR and IIR filter analysis techniques, digital differentiators, integrators, and matched filters. Lyons has significantly updated and expanded his discussions of multirate processing techniques, which are crucial to modern wireless and satellite communications. He also presents nearly twice as many DSP Tricks as in the second edition—including techniques even seasoned DSP professionals may have overlooked. Coverage includes New homework problems that deepen your understanding and help you apply what you’ve learned Practical, day-to-day DSP implementations and problem-solving throughout Useful new guidance on generalized digital networks, including discrete differentiators, integrators, and matched filters Clear descriptions of statistical measures of signals, variance reduction by averaging, and real-world signal-to-noise ratio (SNR) computation A significantly expanded chapter on sample rate conversion (multirate systems) and associated filtering techniques New guidance on implementing fast convolution, IIR filter scaling, and more Enhanced coverage of analyzing digital filter behavior and performance for diverse communications and biomedical applications Discrete sequences/systems, periodic sampling, DFT, FFT, finite/infinite impulse response filters, quadrature (I/Q) processing, discrete Hilbert transforms, binary number formats, and much more




Analysis and Identification of Time-Invariant Systems, Time-Varying Systems, and Multi-Delay Systems using Orthogonal Hybrid Functions


Book Description

This book introduces a new set of orthogonal hybrid functions (HF) which approximates time functions in a piecewise linear manner which is very suitable for practical applications. The book presents an analysis of different systems namely, time-invariant system, time-varying system, multi-delay systems---both homogeneous and non-homogeneous type- and the solutions are obtained in the form of discrete samples. The book also investigates system identification problems for many of the above systems. The book is spread over 15 chapters and contains 180 black and white figures, 18 colour figures, 85 tables and 56 illustrative examples. MATLAB codes for many such examples are included at the end of the book.




Linear Systems Theory


Book Description

A fully updated textbook on linear systems theory Linear systems theory is the cornerstone of control theory and a well-established discipline that focuses on linear differential equations from the perspective of control and estimation. This updated second edition of Linear Systems Theory covers the subject's key topics in a unique lecture-style format, making the book easy to use for instructors and students. João Hespanha looks at system representation, stability, controllability and state feedback, observability and state estimation, and realization theory. He provides the background for advanced modern control design techniques and feedback linearization and examines advanced foundational topics, such as multivariable poles and zeros and LQG/LQR. The textbook presents only the most essential mathematical derivations and places comments, discussion, and terminology in sidebars so that readers can follow the core material easily and without distraction. Annotated proofs with sidebars explain the techniques of proof construction, including contradiction, contraposition, cycles of implications to prove equivalence, and the difference between necessity and sufficiency. Annotated theoretical developments also use sidebars to discuss relevant commands available in MATLAB, allowing students to understand these tools. This second edition contains a large number of new practice exercises with solutions. Based on typical problems, these exercises guide students to succinct and precise answers, helping to clarify issues and consolidate knowledge. The book's balanced chapters can each be covered in approximately two hours of lecture time, simplifying course planning and student review. Easy-to-use textbook in unique lecture-style format Sidebars explain topics in further detail Annotated proofs and discussions of MATLAB commands Balanced chapters can each be taught in two hours of course lecture New practice exercises with solutions included




Time-Varying Systems and Computations


Book Description

Complex function theory and linear algebra provide much of the basic mathematics needed by engineers engaged in numerical computations, signal processing or control. The transfer function of a linear time invariant system is a function of the complex vari able s or z and it is analytic in a large part of the complex plane. Many important prop erties of the system for which it is a transfer function are related to its analytic prop erties. On the other hand, engineers often encounter small and large matrices which describe (linear) maps between physically important quantities. In both cases similar mathematical and computational problems occur: operators, be they transfer functions or matrices, have to be simplified, approximated, decomposed and realized. Each field has developed theory and techniques to solve the main common problems encountered. Yet, there is a large, mysterious gap between complex function theory and numerical linear algebra. For example, complex function theory has solved the problem to find analytic functions of minimal complexity and minimal supremum norm that approxi e. g. , as optimal mate given values at strategic points in the complex plane. They serve approximants for a desired behavior of a system to be designed. No similar approxi mation theory for matrices existed until recently, except for the case where the matrix is (very) close to singular.




Signals and Systems (Edition 3.0)


Book Description

This book is intended for use in teaching undergraduate courses on continuous-time and/or discrete-time signals and systems in engineering (and related) disciplines. It provides a detailed introduction to continuous-time and discrete-time signals and systems, with a focus on both theory and applications. The mathematics underlying signals and systems is presented, including topics such as: signal properties, elementary signals, system properties, continuous-time and discrete-time linear time-invariant systems, convolution, continuous-time and discrete-time Fourier series, the continuous-time and discrete-time Fourier transforms, frequency spectra, and the bilateral and unilateral Laplace and z transforms. Applications of the theory are also explored, including: filtering, equalization, amplitude modulation, sampling, feedback control systems, circuit analysis, Laplace-domain techniques for solving differential equations, and z-domain techniques for solving difference equations. Other supplemental material is also included, such as: a detailed introduction to MATLAB, a review of complex analysis, an introduction to partial fraction expansions, an exploration of time-domain techniques for solving differential equations, and information on online video-lecture content for material covered in the book. Throughout the book, many worked-through examples are provided. Problem sets are also provided for each major topic covered.