LINPACK Users' Guide


Book Description

The authors of this carefully structured guide are the principal developers of LINPACK, a unique package of Fortran subroutines for analyzing and solving various systems of simultaneous linear algebraic equations and linear least squares problems. This guide supports both the casual user of LINPACK who simply requires a library subroutine, and the specialist who wishes to modify or extend the code to handle special problems. It is also recommended for classroom work.




Linpack users' guide


Book Description




Linpack Users' Guide


Book Description




LINPACK


Book Description




Linpack


Book Description




Linpack


Book Description




LINPACK


Book Description




LAPACK95 Users' Guide


Book Description

LAPACK95 Users' Guide provides an introduction to the design of the LAPACK95 package.




LAPACK Users' Guide


Book Description

LAPACK is a library of numerical linear algebra subroutines designed for high performance on workstations, vector computers, and shared memory multiprocessors. Release 3.0 of LAPACK introduces new routines and extends the functionality of existing routines.




ScaLAPACK Users' Guide


Book Description

ScaLAPACK is an acronym for Scalable Linear Algebra Package or Scalable LAPACK. It is a library of high-performance linear algebra routines for distributed memory message-passing MIMD computers and networks of workstations supporting parallel virtual machine (PVM) and/or message passing interface (MPI). It is a continuation of the LAPACK project, which designed and produced analogous software for workstations, vector supercomputers, and shared memory parallel computers. Both libraries contain routines for solving systems of linear equations, least squares problems, and eigenvalue problems. The goals of both projects are efficiency, scalability, reliability, portability, flexibility, and ease of use. ScaLAPACK includes routines for the solution of dense, band, and tridiagonal linear systems of equations, condition estimation and iterative refinement, for LU and Cholesky factorization, matrix inversion, full-rank linear least squares problems, orthogonal and generalized orthogonal factorizations, orthogonal transformation routines, reductions to upper Hessenberg, bidiagonal and tridiagonal form, reduction of a symmetric-definite/ Hermitian-definite generalized eigenproblem to standard form, the symmetric/Hermitian, generalized symmetric/Hermitian, and nonsymmetric eigenproblem, and the singular value decomposition. Prototype codes are provided for out-of-core linear solvers for LU, Cholesky, and QR, the matrix sign function for eigenproblems, an HPF interface to a subset of ScaLAPACK routines, and SuperLU. Software is available in single-precision real, double-precision real, single-precision complex, and double-precision complex. The software has been written to be portable across a wide range of distributed-memory environments such as the Cray T3, IBM SP, Intel series, TM CM-5, networks of workstations, and any system for which PVM or MPI is available. Each Users' Guide includes a CD-ROM containing the HTML version of the ScaLAPACK Users' Guide, the source code for ScaLAPACK and LAPACK, testing and timing programs, prebuilt versions of the library for a number of computers, example programs, and the full set of LAPACK Working Notes.