Lipid Signaling and Metabolism


Book Description

Lipid Signaling and Metabolism provides foundational knowledge and methods to examine lipid metabolism and bioactive lipid signaling mediators that regulate a broad spectrum of biological processes and disease states. Here, world-renowned investigators offer a basic examination of general lipid, metabolism, intracellular lipid storage and utilization that is followed by an in-depth discussion of lipid signaling and metabolism across disease areas, including obesity, diabetes, fatty liver disease, inflammation, cancer, cardiovascular disease and mood-related disorders. Throughout, authors demonstrate how expanding our understanding of lipid mediators in metabolism and signaling enables opportunities for novel therapeutics. Emphasis is placed on bioactive lipid metabolism and research that has been impacted by new technologies and their new potential to transform precision medicine. - Provides a clear, up-to-date understanding of lipid signaling and metabolism and the impact of recent technologies critical to advancing new studies - Empowers researchers to examine bioactive lipid signaling and metabolism, supporting translation to clinical care and precision medicine - Discusses the role of lipid signaling and metabolism in obesity, diabetes, fatty liver disease, inflammation, cancer, cardiovascular disease and mood-related disorders, among others




Lipid-Mediated Signaling


Book Description

As the highly anticipated update to Lipid Second Messengers (CRC Press, 1999), Lipid-Mediating Signaling is a current and comprehensive overview of research methods used in lipid-mediated signal transduction. Pioneering experts provide a much-needed distillation of a decade's worth of advances in research techniques that are pertinent in understand




Lipid signaling in plants


Book Description

Cell membranes are the initial and focal sites of stimulus perception and signal transduction. Membrane lipids are rich sources for the production of signaling messengers that mediate plant growth, development, and response to nutrient status and stresses. In recent years, substantial progress has been made toward understanding lipid signaling in plants, but many fundamental questions remain: What lipids are signaling messengers or mediators in plants? How are the signaling lipids produced and metabolized? In what plant cellular and physiological processes are various lipid mediators involved? How do they carry out their signaling functions? How do lipid signaling networks contribute to modulating plant growth, development, and responses to hormones and stresses? In this Research Topic issue, we invite the broad plant community to address the above questions.Cell membranes are the initial and focal sites of stimulus perception and signal transduction. Membrane lipids are rich sources for the production of signaling messengers that mediate plant growth, development, and response to nutrient status and stresses. In recent years, substantial progress has been made toward understanding lipid signaling in plants, but many fundamental questions remain: What lipids are signaling messengers or mediators in plants? How are the signaling lipids produced and metabolized? In what plant cellular and physiological processes are various lipid mediators involved? How do they carry out their signaling functions? How do lipid signaling networks contribute to modulating plant growth, development, and responses to hormones and stresses? In this Research Topic issue, we invite the broad plant community to address the above questions.




Protein Kinases and Stress Signaling in Plants


Book Description

A comprehensive review of stress signaling in plants using genomics and functional genomic approaches Improving agricultural production and meeting the needs of a rapidly growing global population requires crop systems capable of overcoming environmental stresses. Understanding the role of different signaling components in plant stress regulation is vital to developing crops which can withstand abiotic and biotic stresses without loss of crop yield and productivity. Emphasizing genomics and functional genomic approaches, Protein Kinases and Stress Signaling in Plants is a comprehensive review of cutting-edge research on stress perception, signal transduction, and stress response generation. Detailed chapters cover a broad range of topics central to improving agricultural production developing crop systems capable of overcoming environmental stresses to meet the needs of a rapidly growing global population. This book describes the field of protein kinases and stress signaling with a special emphasis on functional genomics. It presents a highly valuable contribution in the field of stress perception, signal transduction and generation of responses against one or multiple stress signals. This timely resource: Summarizes the role of various kinases involved in stress management Enumerates the role of TOR, GSK3-like kinase, SnRK kinases in different physiological conditions Examines mitogen-activated protein kinases (MAPKs) in different stresses Describes the different aspects of calcium signaling under different stress conditions Examines photo-activated kinases (PAPKs) in varying light conditions Briefs the presence of tyrosine kinases in plants Highlights the cellular functions of receptor ]like protein kinases (RLKs) Possible implication of these kinases in developing stress tolerant crops Protein Kinases and Stress Signaling in Plants: Functional Genomic Perspective is an essential resource for researchers and students in the fields of plant molecular biology and signal transduction, plant responses to stress, plant cell signaling, plant protein kinases, plant biotechnology, transgenic plants and stress biology.




Lipid-mediated Protein Signaling


Book Description

This book provides the most updated information of how membrane lipids mediate protein signaling from studies carried out in animal and plant cells. Also, there are some chapters that go beyond and expand these studies of protein-lipid interactions at the structural level. The book begins with a literature review from investigations associated to sphingolipids, followed by studies that describe the role of phosphoinositides in signaling and closing with the function of other key lipids in signaling at the plasma membrane and intracellular organelles.




Membrane Dynamics and Domains


Book Description

The fluid-mosaic model of membrane structure formulated by Singer and Nicolson in the early 1970s has proven to be a durable concept in terms of the principles governing the organization of the constituent lipids and proteins. During the past 30 or so years a great deal of information has accumulated on the composition of various cell membranes and how this is related to the dif ferent functions that membranes perform. Nevertheless, the task of explaining particular functions at the molecular level has been hampered by lack of struc tural detail at the atomic level. The reason for this is primarily the difficulty of crystallizing membrane proteins which require strategies that differ from those used to crystallize soluble proteins. The unique exception is bacteriorhodopsin of the purple membrane of Halobacterium halobium which is interpolated into a membrane that is neither fluid nor in a mosaic configuration. To date only 50 or so membrane proteins have been characterised to atomic resolution by diffraction methods, in contrast to the vast data accumulated on soluble proteins. Another factor that has been difficult to explain is the reason why the lipid compliment of membranes is often extremely complex. Many hundreds of different molecular species of lipid can be identified in some membranes. Remarkably, the particular composition of each membrane appears to be main tained within relatively narrow limits and its identity distinguished from other morphologically-distinct membranes.







Biogenesis of Fatty Acids, Lipids and Membranes


Book Description

Concise chapters, written by experts in the field, cover a wide spectrum of topics on lipid and membrane formation in microbes (Archaea, Bacteria, eukaryotic microbes).All cells are delimited by a lipid membrane, which provides a crucial boundary in any known form of life. Readers will discover significant chapters on microbial lipid-carrying biomolecules and lipid/membrane-associated structures and processes.




Lipids in Health and Disease


Book Description

Lipids are functionally versatile molecules. They have evolved from relatively simple hydrocarbons that serve as depot storages of metabolites and barriers to the permeation of solutes into complex compounds that perform a variety of signalling functions in higher organisms. This volume is devoted to the polar lipids and their constituents. We have omitted the neutral lipids like fats and oils because their function is generally to act as deposits of metabolizable substrates. The sterols are also outside the scope of the present volume and the reader is referred to volume 28 of this series which is the subject of cholesterol. The polar lipids are comprised of fatty acids attached to either glycerol or sphingosine. The fatty acids themselves constitute an important reservoir of substrates for conversion into families of signalling and modulating molecules including the eicosanoids amongst which are the prostaglandins, thromboxanes and leucotrienes. The way fatty acid metabolism is regulated in the liver and how fatty acids are desaturated are subjects considered in the first part of this volume. This section also deals with the modulation of protein function and inflammation by unsaturated fatty acids and their derivatives. New insights into the role of fatty acid synthesis and eicosenoid function in tumour progression and metastasis are presented.




High Density Lipoproteins


Book Description

In this Handbook of Experimental Pharmacology on “High Density Lipoproteins – from biological understanding to clinical exploitation” contributing authors (members of COST Action BM0904/HDLnet) summarize in more than 20 chapters our current knowledge on the structure, function, metabolism and regulation of HDL in health and several diseases as well as the status of past and ongoing attempts of therapeutic exploitation. The book is of interest to researchers in academia and industry focusing on lipoprotein metabolism, cardiovascular diseases and immunology as well as clinical pharmacologists, cardiologists, diabetologists, nephrologists and other clinicians interested in metabolic or inflammatory diseases.