Short-range Forecasting of Cloudiness and Precipitation Through Extrapolation of GOES Imagery


Book Description

This report describes the development and testing of an objective technique to forecast cloudiness and precipitation through extrapolation of satellite imagery. By utilizing on objectively determined cloud-motion vector, the technique makes local forecasts of satellite parameters (brightness and IR temperature), with high temporal resolution, using simple linear extrapolation. Algorithms are then used to convert the satellite parameters to total cloud cover, probability of 1-hour precipitation, and presence of low, middle, and high clouds. The test program computed motion vectors and made forecasts out to 7 hours, in half-hour steps, at 30 locations. The program was tested on 12 spring and fall cases, using half-hourly GOES imagery. For periods beyond 2 hours, forecasts of cloud cover and precipitation were markedly better than persistence, which deficiencies in specification hindered short-period performance. Forecasts of cloud layers were worse than persistence due to inadequate specification algorithms. The net results were quite encouraging, and further refinements and developments are planned.










Composited Local Area Forecast Techniques


Book Description

A previously developed advection forecast technique was modified to include data extracted from satellite imagery. A forecast experiment was then conducted using a data base gathered at AFGL during March 1984. This experiment was designed to test the usefulness of : (a) 3-hour forecast updates, (b) a biquadratic interpolation, and (c) cloud and precipitation information from satellite imagery. The test results confirmed earlier tests in that advection using space-averaged 500-mb winds produced the best overall scores and that in general the scores for 1 - 15 hours were better than persistence. The age of the advection flow (3, 6 or 9 hours old) did not affect forecast score, making updates useful. The biquadratic interpolation procedure produced better fits to observation than bilinear and appears to have improved forecasts. There was but a small benefit from adding satellite information to surface observations when forecasting cloud cover and hourly precipitation. the difficulties of trying to forecast even 30 to 50 percent of the time-change variance suggest that alternative approaches such as mesoscale modeling will be needed for accurate, reliable short-range forecasts.







Nowcasting


Book Description







Aviation Weather Forecasts Based on Advection


Book Description

Previous experiments had shown that upper-level wind flows could be used to advect surface weather parameters to produce short-range (0-15 hours) forecasts. However, to achieve scores better than persistence, allowance had to be made for stationary weather patterns and also for diurnal changes in weather conditions. Two new forecast experiments were prepared and carried out, using data from 12 cases during March 1983. First, data were edited and adjusted to reduce effects of local conditions (altitude, surface roughness), and then were advected. Finally, the adjustment was removed. The forecasts using a 500 mb space-averaged flow with modified initial conditions produced improved advection forecasts, with some parameters better than persistence and MOS (Model Output Statistics) for 2-7 hours. In the second experiment, an improved objective-analysis procedure was introduced, one based on the 'Barnes' approach, which uses one-half degree (about 45 km) resolution and previous analysis as a first guess. (Prior analyses were 1 degree, single pass, 'Cressman'-type analyses.) These improved analyses resulted in a somewhat better score for 1-3 hours (using a 'change-advection' technique), but were slightly worse at longer periods. Apparently, the small-scale patterns recovered by the improved analyses were largely either short-lived or stationary. These conditions would not lead to better advection forecasts. Further examination revealed that those parameters most difficult to resolve in the objective analyses (visibility, ceiling, and wind speed) also had the lowest forecast skill scores for persistence. Keywords: Aviation forecasting; Meteorology; Mesoscale analysis and forecasting.







A Resume of Short-range Forecasting Techniques


Book Description

Certain techniques applicable to improve short-range forecasting are discussed briefly and references are furnished from which the reader can obtain detailed information on the various methods. (Author).