Local Mathematics For Local Physics: From Number Scaling To Guage Theory And Cosmology


Book Description

The language of the universe is mathematics, but how exactly do you know that all parts of the universe 'speak' the same language? Benioff builds on the idea that the entity that gives substance to both mathematics and physics is the fundamental field, called the 'value field'. While exploring this idea, he notices the similarities that the value field shares with several mysterious phenomena in modern physics: the Higgs field, and dark energy.The author first introduces the concept of the value field and uses it to reformulate the basic framework of number theory, calculus, and vector spaces and bundles. The book moves on to find applications to classical field theory, quantum mechanics and gauge theory. The last two chapters address the relationship between theory and experiment, and the possible physical consequences of both the existence and non-existence of the value field. The book is open-ended, and the list of open questions is certainly longer than the set of proposed answers.Paul Benioff, a pioneer in the field of quantum computing and the author of the first quantum-mechanical description of the Turing machine, devoted the last few years of his life to developing a universal description in which mathematics and physics would be on equal footing. He died on March 29, 2022, his work nearly finished. The final editing was undertaken by Marek Czachor who, in the editorial afterword, attempts to place the author's work in the context of a shift in the scientific paradigm looming on the horizon.




Local Mathematics for Local Physics: From Number Scaling to Guage Theory and Cosmology


Book Description

The language of the universe is mathematics, but how exactly do you know that all parts of the universe 'speak' the same language? Benioff builds on the idea that the entity that gives substance to both mathematics and physics is the fundamental field, called the 'value field'. While exploring this idea, he notices the similarities that the value field shares with several mysterious phenomena in modern physics: the Higgs field, and dark energy.The author first introduces the concept of the value field and uses it to reformulate the basic framework of number theory, calculus, and vector spaces and bundles. The book moves on to find applications to classical field theory, quantum mechanics and gauge theory. The last two chapters address the relationship between theory and experiment, and the possible physical consequences of both the existence and non-existence of the value field. The book is open-ended, and the list of open questions is certainly longer than the set of proposed answers.Paul Benioff, a pioneer in the field of quantum computing and the author of the first quantum-mechanical description of the Turing machine, devoted the last few years of his life to developing a universal description in which mathematics and physics would be on equal footing. He died on March 29, 2022, his work nearly finished. The final editing was undertaken by Marek Czachor who, in the editorial afterword, attempts to place the author's work in the context of a shift in the scientific paradigm looming on the horizon.




The Biggest Ideas in the Universe


Book Description

INSTANT NEW YORK TIMES BESTSELLER “Most appealing... technical accuracy and lightness of tone... Impeccable.”—Wall Street Journal “A porthole into another world.”—Scientific American “Brings science dissemination to a new level.”—Science The most trusted explainer of the most mind-boggling concepts pulls back the veil of mystery that has too long cloaked the most valuable building blocks of modern science. Sean Carroll, with his genius for making complex notions entertaining, presents in his uniquely lucid voice the fundamental ideas informing the modern physics of reality. Physics offers deep insights into the workings of the universe but those insights come in the form of equations that often look like gobbledygook. Sean Carroll shows that they are really like meaningful poems that can help us fly over sierras to discover a miraculous multidimensional landscape alive with radiant giants, warped space-time, and bewilderingly powerful forces. High school calculus is itself a centuries-old marvel as worthy of our gaze as the Mona Lisa. And it may come as a surprise the extent to which all our most cutting-edge ideas about black holes are built on the math calculus enables. No one else could so smoothly guide readers toward grasping the very equation Einstein used to describe his theory of general relativity. In the tradition of the legendary Richard Feynman lectures presented sixty years ago, this book is an inspiring, dazzling introduction to a way of seeing that will resonate across cultural and generational boundaries for many years to come.




Advances in Algebraic Quantum Field Theory


Book Description

This text focuses on the algebraic formulation of quantum field theory, from the introductory aspects to the applications to concrete problems of physical interest. The book is divided in thematic chapters covering both introductory and more advanced topics. These include the algebraic, perturbative approach to interacting quantum field theories, algebraic quantum field theory on curved spacetimes (from its structural aspects to the applications in cosmology and to the role of quantum spacetimes), algebraic conformal field theory, the Kitaev's quantum double model from the point of view of local quantum physics and constructive aspects in relation to integrable models and deformation techniques. The book is addressed to master and graduate students both in mathematics and in physics, who are interested in learning the structural aspects and the applications of algebraic quantum field theory.




Quantum Field Theory


Book Description

The present volume emerged from the 3rd `Blaubeuren Workshop: Recent Developments in Quantum Field Theory', held in July 2007 at the Max Planck Institute of Mathematics in the Sciences in Leipzig/Germany. All of the contributions are committed to the idea of this workshop series: To bring together outstanding experts working in the field of mathematics and physics to discuss in an open atmosphere the fundamental questions at the frontier of theoretical physics.







International Conference on High Energy Physics/ International Union of Pure and Applied Physics, 24. 1988, München


Book Description

This was the most recent in a highly esteemed series of biannual Rochester conferences. 20 invited reviews and about 200 invited contributions on all aspects of current research in high energy and particle physics give a complete and lively account of achievements, activities and goals in the field. Topics discussed include results from proton-antiproton and electron-positron colliders, spectroscopy and decays of heavy flavors, weak mixing and CP violation, non-accelerator particle physics, heavy ion collisions, future accelerators, detector developments, the standard electroweak model and beyond, the status of perturbative QCD, superstrings and unification, new developments in field theory, non-perturbative methods, and cosmology and astrophysics.




Statistical Approach to Quantum Field Theory


Book Description

This new expanded second edition has been totally revised and corrected. The reader finds two complete new chapters. One covers the exact solution of the finite temperature Schwinger model with periodic boundary conditions. This simple model supports instanton solutions – similarly as QCD – and allows for a detailed discussion of topological sectors in gauge theories, the anomaly-induced breaking of chiral symmetry and the intriguing role of fermionic zero modes. The other new chapter is devoted to interacting fermions at finite fermion density and finite temperature. Such low-dimensional models are used to describe long-energy properties of Dirac-type materials in condensed matter physics. The large-N solutions of the Gross-Neveu, Nambu-Jona-Lasinio and Thirring models are presented in great detail, where N denotes the number of fermion flavors. Towards the end of the book corrections to the large-N solution and simulation results of a finite number of fermion flavors are presented. Further problems are added at the end of each chapter in order to guide the reader to a deeper understanding of the presented topics. This book is meant for advanced students and young researchers who want to acquire the necessary tools and experience to produce research results in the statistical approach to Quantum Field Theory.







High Energy Physics Index


Book Description