Dye-Sensitized Solar Cells


Book Description

Dye-Sensitized Solar Cells: Mathematical Modelling and Materials Design and Optimization presents the latest information as edited from leaders in the field. It covers advances in DSSC design, fabrication and mathematical modelling and optimization, providing a comprehensive coverage of various DSSC advances that includes different system scales, from electronic to macroscopic level, and a consolidation of the results with fundamentals. The book is extremely useful as a monograph for graduate students and researchers, but is also a comprehensive, general reference on state-of-the-art techniques in modelling, optimization and design of DSSCs.




Dye-Sensitized Solar Cells


Book Description

Dye-Sensitized Solar Cells: Emerging Trends and Advanced Applications is highly focused on addressing all aspects of dye sensitized solar cell technology. In this book, the authors present systematic analysis and working principles and detailed studies of individual components, manufacturing methods, software assisted design surrounding the technology market, commercialization potential, and performance evaluations and detailed fabrication methods and parameters. As there is no specific book which could encircle all the aspects of dye sensitized solar cells from its very basic working principles to advanced approached to improve it efficiency, this book fills that gap. Providing a comprehensive study on dye sensitized solar cells, this reference covers basic working principles to advanced approaches in improving efficiency as well as thermodynamic and kinetic studies. It will be ideal for advanced stage researchers and engineers looking to get a grip on DSSC technology. - Provides a compilation of all-important principles and advanced research in the field of dye sensitized solar cells - Specifies constituents of each DSSC, from basic to advanced level - Details advances in fabrication and software assisted design of DSSC




Stability and Degradation of Organic and Polymer Solar Cells


Book Description

Organic photovoltaics (OPV) are a new generation of solar cells with the potential to offer very short energy pay back times, mechanical flexibility and significantly lower production costs compared to traditional crystalline photovoltaic systems. A weakness of OPV is their comparative instability during operation and this is a critical area of research towards the successful development and commercialization of these 3rd generation solar cells. Covering both small molecule and polymer solar cells, Stability and Degradation of Organic and Polymer Solar Cells summarizes the state of the art understanding of stability and provides a detailed analysis of the mechanisms by which degradation occurs. Following an introductory chapter which compares different photovoltaic technologies, the book focuses on OPV degradation, discussing the origin and characterization of the instability and describing measures for extending the duration of operation. Topics covered include: Chemical and physical probes for studying degradation Imaging techniques Photochemical stability of OPV materials Degradation mechanisms Testing methods Barrier technology and applications Stability and Degradation of Organic and Polymer Solar Cells is an essential reference source for researchers in academia and industry, engineers and manufacturers working on OPV design, development and implementation.




Solar Cells and Their Applications


Book Description

A major update of solar cell technology and the solar marketplace Since the first publication of this important volume over a decade ago, dramatic changes have taken place with the solar market growing almost 100-fold and the U.S. moving from first to fourth place in the world market as analyzed in this Second Edition. Three bold new opportunities are identified for any countries wanting to improve market position. The first is combining pin solar cells with 3X concentration to achieve economic competitiveness near term. The second is charging battery-powered cars with solar cell–generated electricity from arrays in surrounding areas—including the car owners' homes—while simultaneously reducing their home electricity bills by over ninety percent. The third is formation of economic "unions" of sufficient combined economic size to be major competitors. In this updated edition, feed-in tariffs are identified as the most effective approach for public policy. Reasons are provided to explain why pin solar cells outperform more traditional pn solar cells. Field test data are reported for nineteen percent pin solar cells and for ~500X concentrating systems with bare cell efficiencies approaching forty percent. Paths to bare cell efficiencies over fifty percent are described, and key missing program elements are identified. Since government support is needed for new technology prototype integration and qualification testing before manufacturing scale up, the key economic measure is identified in this volume as the electricity cost in cents per kilowatt-hour at the complete installed system level, rather than just the up-front solar cell modules' costs in dollars per watt. This Second Edition will benefit technologists in the fields of solar cells and systems; solar cell researchers; power systems designers; academics studying microelectronics, semiconductors, and solar cells; business students and investors with a technical focus; and government and political officials developing public policy.




Dye-sensitized Solar Cells


Book Description

Several forms of thin-film solar cells are being examined as alternatives to silicon-solar cells-one of the most promising technologies is the dye-sensitized solar cell (DSC), with proven efficiencies that approach 11%. This book, which provides a comprehensive look at this promising technology, is a graduate level text that brings together the fundamentals of DSC from three perspectives (materials, performance, and mechanistic aspects). It is also an advanced monograph that summarizes the key advances and lists the technical challenges remaining to be solved.




Thermal Behavior of Photovoltaic Devices


Book Description

This book provides a comprehensive introduction to the thermal issues in photovoltaics. It also offers an extensive overview of the physics involved and insights into possible thermal optimizations of the different photovoltaic device technologies.In general, temperature negatively affects the efficiency of photovoltaic devices. The first chapter describes the temperature-induced losses in photovoltaic devices and reviews the strategies to overcome them. The second chapter introduces the concept of temperature coefficient, the underlying physics and some guidelines for reducing their negative impacts. Subsequent chapters offer a comprehensive and general thermal model of photovoltaic devices, and review how current and emerging technologies, mainly solar cells but also thermophotovoltaic devices, can benefit from thermal optimizations.Throughout the book, the authors argue that the energy yield of photovoltaic devices can be optimized by taking their thermal behavior and operating conditions into consideration in their design.




Fundamentals of Solar Cell Design


Book Description

Solar cells are semiconductor devices that convert light photons into electricity in photovoltaic energy conversion and can help to overcome the global energy crisis. Solar cells have many applications including remote area power systems, earth-orbiting satellites, wristwatches, water pumping, photodetectors and remote radiotelephones. Solar cell technology is economically feasible for commercial-scale power generation. While commercial solar cells exhibit good performance and stability, still researchers are looking at many ways to improve the performance and cost of solar cells via modulating the fundamental properties of semiconductors. Solar cell technology is the key to a clean energy future. Solar cells directly harvest energy from the sun’s light radiation into electricity are in an ever-growing demand for future global energy production. Solar cell-based energy harvesting has attracted worldwide attention for their notable features, such as cheap renewable technology, scalable, lightweight, flexibility, versatility, no greenhouse gas emission, environment, and economy friendly and operational costs are quite low compared to other forms of power generation. Thus, solar cell technology is at the forefront of renewable energy technologies which are used in telecommunications, power plants, small devices to satellites. Aiming at large-scale implementation can be manipulated by various types used in solar cell design and exploration of new materials towards improving performance and reducing cost. Therefore, in-depth knowledge about solar cell design is fundamental for those who wish to apply this knowledge and understanding in industries and academics. This book provides a comprehensive overview on solar cells and explores the history to evolution and present scenarios of solar cell design, classification, properties, various semiconductor materials, thin films, wafer-scale, transparent solar cells, and so on. It also includes solar cells’ characterization analytical tools, theoretical modeling, practices to enhance conversion efficiencies, applications and patents.




Dye-sensitized Solar Cells


Book Description

The operation of everything in the universe needs a special „material“-energy. The earth is no exception. There are many kinds of energy sources on earth. But where does the earth‘s energy come from? The answer is that everything grows under the sun. Developing renewable energy is of strategic importance to achieve sustainable energy supply. Simulating natural photosynthesis is the ultimate goal of effi cient solar energy conversion. Photovoltaic technology has been widely used in industry and will be one of the major energy sources in the future. Developing new materials and structures, the photoelectric conversion effi ciency of solar cells will be improved day by day, and solar cells will attract more and more attention. This book presents principles of solar photovoltaic conversion, and introduces the physical and chemical processes involved. Mechanisms which affect solar cell performance are also discussed.




Semiconductor Photovoltaic Cells


Book Description

This book explores the scientific basis of the photovoltaic effect, solar cell operation, various types of solar cells, and the main process used in their manufacture. It addresses a range of topics, including the production of solar silicon; silicon-based solar cells and modules; the choice of semiconductor materials and their production-relevant costs and performance; device structures, processing, and manufacturing options for the three major thin-film PV technologies; high-performance approaches for multi-junction, concentrator, and space applications; and new types of organic polymer and dye-sensitized solar cells. The book also presents a concept for overcoming the efficiency limit of today’s solar cells. Accessible for beginners, while also providing detailed information on the physics and technology for experts, the book is a valuable resource for researchers, engineers, and graduate students in fields such as physics, materials, energy, electrical and electronic engineering and microelectronics.




Advances in Solar Energy Research


Book Description

This book covers major technological advancements in, and evolving applications of, thermal and photovoltaic solar energy systems. Advances in technologies for harnessing solar energy are extensively discussed, with topics including the fabrication, compaction and optimization of energy grids, solar cells and panels. Leading international experts discuss the applications, challenges and future prospects of research in this increasingly vital field, providing a valuable resource for all researchers working in this field.