Low Cost Structural Health Monitoring of Bridges Using Wireless Senspot Sensors


Book Description

Deterioration of highway bridges is a common, yet complex problem. To protect highway bridges, this project combines a number of recent and emerging technologies, microstructured sensing, ultra-low-power wireless communication, and advanced microelectronics, into a novel, small, and lightweight wireless device known as SenSpot. SenSpot sensors are based on Active RF Technology (ART), which offers a high performance method for large-scale sensing, wireless synchronization, and ultra low power wireless communication. To evaluate ART technology, the project investigators studied laboratory and field performance of SenSpot sensors. In particular, research was conducted to study performance of SenSpot sensors in accurate measurement of strain and tilt (inclination). Laboratory experiments showed that although SenSpot sensors operate under extremely tight energy constraints and consume less that 4 microwatts of power, the devices provide a very accurate measurement of strain and tilt. Moreover, field performance of SenSpot sensors installed on a bridge on I495 was closely analyzed. The study showed that SenSpot sensors used to measure tilt on the bridge bearings provide a consistent readout with the expected change in the orientation of the bearings as a result of thermal expansion/contraction of the bridge deck; hence, SenSpot sensors provide a reliable remote monitoring tool to detect instances where bridge bearings could possibly freeze or overturn. Additionally, SenSpot sensors that were used for strain measurement showed that the device can detect instances when loading conditions of a bridge change or a structural change in the bridge happens.




Structural Health Monitoring of Bridges Using Wireless Sensor Networks


Book Description

Structural Health Monitoring, damage detection and localization of bridges using Wireless Sensor Networks (WSN) are studied in this thesis. The continuous monitoring of bridges to detect damage is a very useful tools for preventing unnecessary costly and emergent maintenance. The optimal design aims to maximize the lifetime of the system, the accuracy of the sensed data, and the system reliability, and to minimize the system cost and complexity Finite Element Analysis (FEA) is carried out using LUSAS Bridge Plus software to determine sensor locations and measurement types and effectively minimize the number of sensors, data for transmission, and volume of data for processing. In order to verify the computer simulation outputs and evaluate the proposed optimal design and algorithms, a WSN system mounted on a simple reinforced concrete frame model is employed in the lab. A series of tests are carried out on the reinforced concrete frame mounted on the shaking table in order to simulate the existing extreme loading condition. Experimental methods which are based on modal analysis under ambient vibrational excitation are often employed to detect structural damages of mechanical systems, many of such frequency domain methods as first step use a Fast Fourier Transform estimate of the Power Spectral Density (PSD) associated with the response of the system. In this study it is also shown that higher order statistical estimators such as Spectral Kurtosis (SK) and Sample to Model Ratio (SMR) may be successfully employed to more reliably discriminate the response of the system against the ambient noise and better identify and separate contributions from closely spaced individual modes. Subsequently, the identified modal parameters are used for damage detection and Structural Health Monitoring. To evaluate the preliminary results of the project's prototype and quantify the current bridge response as well as demonstrate the ability of the SHM system to successfully perform on a bridge, the deployment of Wireless Sensor Networks in an existing highway bridge in Qatar is implemented. The proposed technique will eventually be applied to the new stadium that State of Qatar will build in preparation for the 2022 World Cup. This monitoring system will help permanently record the vibration levels reached in all substructures during each event to evaluate the actual health state of the stadiums. This offers the opportunity to detect potentially dangerous situations before they become critical.




Structural Health Monitoring for Bridge Structures Using Wireless Smart Sensors


Book Description

Structural health monitoring (SHM) has drawn significant attention in recent decades because of its potential to reduce maintenance costs and increase the reliability of structures. An important class of structures that can potentially benefit from SHM are bridges, many of which are structurally deficient due to lack of adequate maintenance. Through condition assessment of these bridges, an effective plan of maintenance can be determined, offering the possibility to prolong service life, as well as to prevent catastrophic disasters due to sudden collapse. To date, numerous damage detection algorithms have been proposed. Still, challenges remain in applying such algorithms to monitor bridges in the field. In reality, the extent of an SHM system is limited by available budgets, which define the number of sensors that can be deployed. This dissertation first presents a damage detection algorithm using static strain developed for efficient structural condition assessment with a few sensor nodes. A laboratory moving vehicle experiment has been developed for validation of the approach. However, just a few sensor nodes in SHM system cannot provide detailed information on damage location. A solution to include many sensors within a limited budget with increased efficiency is to use a Wireless Smart Sensor Network (WSSN) because of the merits of low cost, easy installation, and effective data management. An acceleration-based SHM algorithm for WSSN has been developed with a decentralized network topology. This approach has been implemented into a modularized damage detection service. The SHM application is designed to leverage the on-board computation capability of the WSSN, reducing the transmitted data size by distributing the computation burden. The SHM application for WSSN has been validated in lab-scale experiments on a truss bridge model. Nonetheless, the real challenge of SHM is in the deployment on full-scale bridges for continuous monitoring. The usability and stability of WSSN has been validated on an architectural staircase in the Siebel Center. Based on the usability investigation, the deployment of the world0́9s largest WSSN on the Jindo Bridge, a cable-stayed bridge has been achieved in South Korea. The main purpose of the deployment was to validate the bridge monitoring system using WSSN and energy harvesting devices in a long-term manner. The ultimate goal of this dissertation is to deploy the developed on-board decentralized damage identification application using WSSN on a historic truss bridge. As a first step, a series of dynamic tests were conducted for modal analysis using both wired and wireless sensor systems. During the tests, the functionality of the wireless sensor system with ISHMP Services Toolsuite was confirmed. For model-based damage identification approach developed herein, a finite element (FE) model was created. The initial FE model was updated based on a visual estimate of the corrosion. The updated model was used to generate baseline information for damage detection. Finally, the WSSN-based autonomous SHM system using the decentralized damage detection application was deployed on the historic bridge. The permanent SHM system was installed on the bridge, and the damage detection application was successfully run on the bridge. The damage detection results using the comprehensive application will be compared with those from the measured data. In summary, this dissertation provides a robust SHM system for bridge structures in use of WSSN. The decentralized damage detection approach is experimentally validated for WSSN. The performance of WSSN and energy harvesting devices will be evaluated.




Structural Health Monitoring of a Bridge Structural Using Wireless Sensor Network


Book Description

Bridge Structural Health Monitoring (SHM) has rapidly become one of the main interests in the civil engineering field. An inexpensive and efficient SHM method utilizing Wireless Sensor Network (WSN) is helping to facilitate the selection of the bridges that require maintenance. The changes to structural properties (i.e. stiffness) caused by damage (i.e. corrosion) will change the structural responses (I.e. acceleration responses) to ambient motions. Modal analysis algorithms applied to the vibration responses acquired through WSN provide the modal properites (i.e. natural frequency, modal shape and damping ratio) that will change with the changes in stiffness indicating possible existence of damage. Three output-only modal analysis algorithms: Stochastic Subspace Identification (SSI), Auto-regressive Moving Average (ARMA) and Fast Fourier Transform (FFT) were evaluated based on their accuracy and efficiency in extracting modal properties using two case studies. FFT was found to be the most accurate and consistent algorithm. The extracted modal properties of the Holland Bridge agree with the ones obtained from the Finite Element (FE) bridge model. The extracted damping ratios from different algorithms were not consistent. Recommendations on future research in bridge SHM using WSN and modal analysis algorithms are provided.







Structural Health Monitoring for Suspension Bridges


Book Description

This book presents extensive information on structural health monitoring for suspension bridges. During the past two decades, there have been significant advances in the sensing technologies employed in long-span bridge health monitoring. However, interpretation of the massive monitoring data is still lagging behind. This book establishes a series of measurement interpretation frameworks that focus on bridge site environmental conditions, and global and local responses of suspension bridges. Using the proposed frameworks, it subsequently offers new insights into the structural behaviors of long-span suspension bridges. As a valuable resource for researchers, scientists and engineers in the field of bridge structural health monitoring, it provides essential information, methods, and practical algorithms that can facilitate in-service bridge performance assessments.




Health Monitoring of Bridges


Book Description

Health Monitoring of Bridges prepares the bridge engineering community for the exciting new technological developments happening in the industry, offering the benefit of much research carried out in the aerospace and other industrial sectors and discussing the latest methodologies available for the management of bridge stock. Health Monitoring of Bridges: Includes chapters on the hardware used in health monitoring, methodologies, applications of these methodologies (materials, methods, systems and functions), decision support systems, damage detection systems and the rating of bridges and methods of risk assessment. Covers both passive and active monitoring approaches. Offers directly applicable methods and as well as prolific examples, applications and references. Is authored by a world leader in the development of health monitoring systems. Includes free software that can be downloaded from http://www.samco.org/ and provides the raw data of benchmark projects and the key results achieved. This book provides a comprehensive guide to all aspects of the structural health monitoring of bridges for engineers involved in all stages from concept design to maintenance. It will also appeal to researchers and academics within the civil engineering and structural health monitoring communities.




Structural Health Monitoring of Civil Infrastructure Systems


Book Description

Structural health monitoring is an extremely important methodology in evaluating the ‘health’ of a structure by assessing the level of deterioration and remaining service life of civil infrastructure systems. This book reviews key developments in research, technologies and applications in this area of civil engineering. It discusses ways of obtaining and analysing data, sensor technologies and methods of sensing changes in structural performance characteristics. It also discusses data transmission and the application of both individual technologies and entire systems to bridges and buildings. With its distinguished editors and international team of contributors, Structural health monitoring of civil infrastructure systems is a valuable reference for students in civil and structural engineering programs as well as those studying sensors, data analysis and transmission at universities. It will also be an important source for practicing civil engineers and designers, engineers and researchers developing sensors, network systems and methods of data transmission and analysis, policy makers, inspectors and those responsible for the safety and service life of civil infrastructure. Reviews key developments in research, technologies and applications Discusses systems used to obtain and analyse data and sensor technologies Assesses methods of sensing changes in structural performance




Engineering Asset Management - Systems, Professional Practices and Certification


Book Description

This proceeding represents state-of-the-art trends and developments in the emerging field of engineering asset management as presented at the Eight World Congress on Engineering Asset Management (WCEAM). The Proceedings of the WCEAM 2013 is an excellent reference for practitioners, researchers and students in the multidisciplinary field of asset management, covering topics such as: Asset condition monitoring and intelligent maintenance, 2. Asset data warehousing, data mining and fusion, 3. Asset performance and level-of-service models, 4. Design and life-cycle integrity of physical assets, 5. Deterioration and preservation models for assets, 6. Education and training in asset management, 7. Engineering standards in asset management, 8. Fault diagnosis and prognostics, 9. Financial analysis methods for physical assets, 10. Human dimensions in integrated asset management, 11. Information quality management, 12. Information systems and knowledge management, 13. Intelligent sensors and devices, 14. Maintenance strategies in asset management, 15. Optimisation decisions in asset management, 16. Risk management in asset management, 17. Strategic asset management, 18. Sustainability in asset management. King WONG served as Congress Chair for WCEAM 2013 and ICUMAS 2013 is the President of the Hong Kong Institute of Utility Specialists (HKIUS) and Convener of International Institute of Utility Specialists (IIUS). Peter TSE is the Director of the Smart Engineering Asset Management laboratory (SEAM) at the City University of Hong Kong and served as the Chair of WCEAM 2013 Organising Committee. Joseph MATHEW served as the Co-Chair of WCEAM 2013 is also WCEAM’s General Chair. He is the Chief Executive Officer of Asset Institute, Australia.




Structural Health Monitoring of Long-Span Suspension Bridges


Book Description

Long span suspension bridges cost billions. In recent decades, structural health monitoring systems have been developed to measure the loading environment and responses of these bridges in order to assess serviceability and safety while tracking the symptoms of operational incidents and potential damage. This helps ensure the bridge functions properly during a long service life and guards against catastrophic failure under extreme events. Although these systems have achieved some success, this cutting-edge technology involves many complex topics that present challenges to students, researchers, and engineers alike. Systematically introducing the fundamentals and outlining the advanced technologies for achieving effective long-term monitoring, Structural Health Monitoring of Long-Span Suspension Bridges covers: The design of structural health monitoring systems Finite element modelling and system identification Highway loading monitoring and effects Railway loading monitoring and effects Temperature monitoring and thermal behaviour Wind monitoring and effects Seismic monitoring and effects SHMS-based rating method for long span bridge inspection and maintenance Structural damage detection and test-bed establishment These are applied in a rigorous case study, using more than ten years' worth of data, to the Tsing Ma suspension bridge in Hong Kong to examine their effectiveness in the operational performance of a real bridge. The Tsing Ma bridge is the world's longest suspension bridge to carry both a highway and railway, and is located in one of the world’s most active typhoon regions. Bridging the gap between theory and practice, this is an ideal reference book for students, researchers, and engineering practitioners.