Low Dimensional Properties Of Solids: Nobel Jubilee Symposium - Proceedings Of The Nobel Jubilee Symposium


Book Description

Rarely do so many leading physicists attend one symposium. No less than nine Nobel laureates and some 40 other top researchers gathered for this symposium and this book contains the material presented in invited talks as well as the posters. The 34 papers are organised into three groups corresponding to various aspects of low dimensional physics of solids.




The Physics and Chemistry of Low Dimensional Solids


Book Description

Proceedings of the NATO Advanced Study Institute, Tomar, Portugal, August 26-September 7, 1979




Low-Dimensional Solids


Book Description

With physical properties that often may not be described by the transposition of physical laws from 3D space across to 2D or even 1D space, low-dimensional solids exhibit a high degree of anisotropy in the spatial distribution of their chemical bonds. This means that they can demonstrate new phenomena such as charge-density waves and can display nanoparticulate (0D), fibrous (1D) and lamellar (2D) morphologies. This text presents some of the most recent research into the synthesis and properties of these solids and covers: Metal Oxide Nanoparticles Inorganic Nanotubes and Nanowires Biomedical Applications of Layered Double Hydroxides Carbon Nanotubes and Related Structures Superconducting Borides Introducing topics such as novel layered superconductors, inorganic-DNA delivery systems and the chemistry and physics of inorganic nanotubes and nanosheets, this book discusses some of the most exciting concepts in this developing field. Additional volumes in the Inorganic Materials Book Series: Molecular Materials Functional Oxides Porous Materials Energy Materials All volumes are sold individually or as comprehensive 5 Volume Set.




Physics and Chemistry of Low-Dimensional Inorganic Conductors


Book Description

The field of low-dimensional conductors has been very active for more than twenty years. It has grown continuously and both the inorganic and organic materials have remark able properties, such as charge and spin density waves and superconductivity. The discovery of superconductivity at high temperature in copper-based quasi two-dimensional conducting oxides nearly ten years ago has further enlarged the field and stimulated new research on inorganic conductors. It was obviously impossible to cover such a broad field in a ten day Institute and it seemed pertinent to concentrate on inorganic conductors, excluding the high Tc superconducting oxides. In this context, it was highly desirable to include both physics and chemistry in the same Institute in order to tighten or in some cases to establish links between physicists and chemists. This Advanced Study Institute is the continuation of a series of similar ones which have taken place every few years since 1974. 73 participants coming from 13 countries have taken part in this School at the beautiful site of the Centre de Physique des Houches in the Mont-Blanc mountain range. The scientific programme included more than forty lectures and seminars, two poster sessions and ten short talks. Several discussion sessions were organized for the evenings, one on New Materials, one on New Topics and one on the special problem of the Fermi and Luttinger liquids. The scientific activity was kept high from the beginning to the end of the Institute.




Solid State Properties


Book Description

This book fills a gap between many of the basic solid state physics and materials sciencebooks that are currently available. It is written for a mixed audience of electricalengineering and applied physics students who have some knowledge of elementaryundergraduate quantum mechanics and statistical mechanics. This book, based on asuccessful course taught at MIT, is divided pedagogically into three parts: (I) ElectronicStructure, (II) Transport Properties, and (III) Optical Properties. Each topic is explainedin the context of bulk materials and then extended to low-dimensional materials whereapplicable. Problem sets review the content of each chapter to help students to understandthe material described in each of the chapters more deeply and to prepare them to masterthe next chapters.




The Physics Of Low Dimensional Materials


Book Description

The purpose of this book is two fold. First to explain the properties of low dimensional solids such as electronic, vibrational and magnetic structure in terms of simple models. These are used to account for the properties of three dimensional materials providing an elementary introduction to the physics of low dimensional materials. The second objective is to discuss the properties of newer low dimensional materials not made of carbon. These are now the subject of research and describe various phenomena in them such magnetism and superconductivity.




Handbook of Elastic Properties of Solids, Liquids, and Gases, Four-Volume Set


Book Description

Sound waves propagate through galactic space, through two-dimensional solids, through biological systems, through normal and dense stars, and through everything that surrounds us; the earth, the sea, and the air. We use sound to locate objects, to identify objects, to understand processes going on in nature, to communicate, and to entertain. The elastic properties of materials determine the velocity of sound in them and tell us about their response to stresses something which is very important when we are trying to construct, manufacture, or create something with any material. The Handbook of Elastic Properties of Materials will provide these characteristics for almost everything whose elastic properties has ever been measured or deduced in a concise and approachable manner. Leading experts will explain the significance of the elastic properties as they relate to intrinsic microscopic behavior, to manufacturing, to construction, or to diagnosis. They will discuss the propagation of sound in newly discovered or created materials, and in common materials which are being investigated with a fresh outlook. The Handbook will provide the reader with the elastic properties of the common and mundane, the novel and unique, the immense and the microscopic, and the exhorbitantly dense and the ephemeral.. You will also find the measurement. And theoretical techniques that have been developed and invented in order to extract these properties from a reluctant nature and recalcitrant systems. Key Features * Solids, liquids and gases covered in one handbook * Articles by experts describing insights developed over long and Illustrious careers * Properties of esoteric substances, such as normal and dense stars, superfluid helium three, fullerness, two dimensional solids, extraterrestial substances, gems and planetary atmospheres * Properties of common materials such as food, wood used for musical instruments, paper, cement, and cork * Modern dynamic elastic properties measurement techniques




Isotope Low-Dimensional Structures


Book Description

This Briefs volume describes the properties and structure of elementary excitations in isotope low-dimensional structures. Without assuming prior knowledge of quantum physics, the present book provides the basic knowledge needed to understand the recent developments in the sub-disciplines of nanoscience isotopetronics, novel device concepts and materials for nanotechnology. It is the first and comprehensive interdisciplinary account of the newly developed scientific discipline isotopetronics.




Nonlinear Spectroscopy of Solids


Book Description

This report presents an account of the course "Nonlinear Spectroscopy of Solids: Advances and Applications" held in Erice, Italy, from June 16 to 30, 1993. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the "Ettore Majorana" Centre for Scientific Culture. The purpose of this course was to present and discuss physical models, mathematical formalisms, experimental techniques, and applications relevant to the subject of nonlinear spectroscopy of solid state materials. The universal availability and application of lasers in spectroscopy has led to the widespread observation of nonlinear effects in the spectroscopy of materials. Nonlinear spectroscopy encompasses many physical phenomena which have their origin in the monochromaticity, spectral brightness, coherence, power density and tunability of laser sources. Conventional spectroscopy assumes a linear dependence between the applied electromagnetic field and the induced polarization of atoms and molecules. The validity of this assumption rests on the fact that even the most powerful conventional sources of light produce a light intensity which is not strong enough to equalize the rate of stimulated emission and that of the experimentally observed decay. A different situation may arise when laser light sources are used, particularly pulsed lasers. The use of such light sources can make the probability of induced emission comparable to, or even greater than, the probability of the observed decay; in such cases the nonlinearity of the response of the system is revealed by the experimental data and new properties, not detectable by conventional spectroscopy, will emerge.




Low-Dimensional Systems: Theory, Preparation, and Some Applications


Book Description

This volume contains papers presented at the NATO Advanced Research Workshop (ARW) Dynamic Interactions in Quantum Dot Systems held at Hotel Atrium in Puszczykowo, near Poznan, Poland, May 16-19,2002. The term low-dimensional systems, which is used in the title of this volume, refers to those systems which contain at least one dimension that is intermediate between those characteristic ofatoms/molecules and those ofthe bulk material. Depending on how many dimensions lay within this range, we generally speak of quantum wells, quantum wires, and quantum dots. As such an intermediate state, some properties of low-dimensional systems are very different to those of their molecular and bulk counterparts. These properties generally include optical, electronic, and magnetic properties, and all these are partially covered in this book. The main goal of the workshop was to discuss the actual state of the art in the broad area ofnanotechnology. The initial focus was on the innovative synthesis of nanomaterials and their properties such as: quantum size effects, superparamagnetism, or field emission. These topics lead us into the various field based interactions including plasmon- magnetic spin- and exciton coupling. The newer, more sophisticated methods for characterization of nanomaterials were discussed, as well as the methods for possible industrial applications. In general, chemists and physicists, as well as experts on both theory and experiments on nanosized regime structures were brought together, to discuss the general phenomena underlying their fields ofinterest from different points ofview.